The aim of this work is to study the effect of relative humidity (RH) on CO2 gas transport in polyetherimide (PEI) membranes. The Non-Random Hydrogen Bonding model, extended to the case of non-equilibrium glassy polymers (NETGP-NRHB model), is used to interpret the sorption thermodynamics in glassy polymer/penetrant mixtures. Furthermore, a new diffusion model (namely NETGP-NRHB-DM), in the spirit of the Free Volume Theory, is used in combination with the NETGP-NRHB model to interpret the gas permeation. The parameters of the two models have been obtained partly from the literature and partly from a dedicated experimental campaign. The full set of parameters is used in a predictive manner to calculate the permeability coefficient of CO2 in PEI at different temperatures and relative humidity conditions. The model results are validated against a complete set of experimental data specifically carried out for the present investigation. The CO2 permeability predictions are satisfactory, but a slight deviation between the calculated results and the experimental data is observed when the average amount of water in the membrane is high, probably due to the onset of water clustering. In fact, the phenomenological expression of the mobility coefficient of NETGP-NRHB-DM is not properly suited to describe the complex picture involving different kind of water mers starting from the water clustering concentration onset.

Modelling relative humidity and temperature effects on CO2 gas transport in polyetherimide / Baldanza, A.; Brondi, C.; Loianno, V.; Mensitieri, G.; Scherillo, G.. - In: POLYMER. - ISSN 0032-3861. - 291:(2024). [10.1016/j.polymer.2023.126595]

Modelling relative humidity and temperature effects on CO2 gas transport in polyetherimide

Baldanza A.
Primo
Investigation
;
Brondi C.
Secondo
Investigation
;
Loianno V.
Investigation
;
Mensitieri G.
Conceptualization
;
Scherillo G.
Ultimo
Formal Analysis
2024

Abstract

The aim of this work is to study the effect of relative humidity (RH) on CO2 gas transport in polyetherimide (PEI) membranes. The Non-Random Hydrogen Bonding model, extended to the case of non-equilibrium glassy polymers (NETGP-NRHB model), is used to interpret the sorption thermodynamics in glassy polymer/penetrant mixtures. Furthermore, a new diffusion model (namely NETGP-NRHB-DM), in the spirit of the Free Volume Theory, is used in combination with the NETGP-NRHB model to interpret the gas permeation. The parameters of the two models have been obtained partly from the literature and partly from a dedicated experimental campaign. The full set of parameters is used in a predictive manner to calculate the permeability coefficient of CO2 in PEI at different temperatures and relative humidity conditions. The model results are validated against a complete set of experimental data specifically carried out for the present investigation. The CO2 permeability predictions are satisfactory, but a slight deviation between the calculated results and the experimental data is observed when the average amount of water in the membrane is high, probably due to the onset of water clustering. In fact, the phenomenological expression of the mobility coefficient of NETGP-NRHB-DM is not properly suited to describe the complex picture involving different kind of water mers starting from the water clustering concentration onset.
2024
Modelling relative humidity and temperature effects on CO2 gas transport in polyetherimide / Baldanza, A.; Brondi, C.; Loianno, V.; Mensitieri, G.; Scherillo, G.. - In: POLYMER. - ISSN 0032-3861. - 291:(2024). [10.1016/j.polymer.2023.126595]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0032386123009254-main.pdf

embargo fino al 28/02/2026

Descrizione: file pdf del lavoro
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/953824
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact