: Aminolysis is widely recognized as a valuable chemical route for depolymerizing polymeric materials containing ester, amide, or urethane functional groups, including polyurethane foams. Bio-based polyurethane foams, pristine and reinforced with 40 wt% of sustainable fillers, were depolymerized in the presence of bio-derived butane-1,4-diamine, BDA. A process comparison was made using fossil-derived ethane-1,2-diamine, EDA, by varying amine/polyurethane ratio (F/A, 1:1 and 1:0.6). The obtained depolymerized systems were analyzed by FTIR and NMR characterizations to understand the effect of both diamines on the degradation pathway. The use of bio-based BDA seemed to be more effective with respect to conventional EDA, owing to its stronger basicity (and thus higher nucleophilicity), corresponding to faster depolymerization rates. BDA-based depolymerized systems were then employed to prepare second-generation bio-based composite polyurethane foams by partial replacement of isocyanate components (20 wt%). The morphological, mechanical, and thermal conductivity properties of the second-generation polyurethane foams were evaluated. The best performances (σ10 %=71 ± 9 kPa, λ = 0.042 ± 0.015 W∙ m-1 ∙K-1) were attained by employing the lowest F/A ratio (1:0.6); this demonstrates their potential application in different sectors such as packaging or construction, fulfilling the paradigm of the circular economy.

Efficient recycling pathway of bio-based composite polyurethane foams via sustainable diamine / Recupido, Federica; Lama, Giuseppe Cesare; Steffen, Sebastian; Dreyer, Christian; Seidlitz, Holger; Russo, Vincenzo; Lavorgna, Marino; De Luca Bossa, Ferdinando; Silvano, Selena; Boggioni, Laura; Verdolotti, Letizia. - In: ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY. - ISSN 0147-6513. - 269:(2024), p. 115758. [10.1016/j.ecoenv.2023.115758]

Efficient recycling pathway of bio-based composite polyurethane foams via sustainable diamine

Russo, Vincenzo;
2024

Abstract

: Aminolysis is widely recognized as a valuable chemical route for depolymerizing polymeric materials containing ester, amide, or urethane functional groups, including polyurethane foams. Bio-based polyurethane foams, pristine and reinforced with 40 wt% of sustainable fillers, were depolymerized in the presence of bio-derived butane-1,4-diamine, BDA. A process comparison was made using fossil-derived ethane-1,2-diamine, EDA, by varying amine/polyurethane ratio (F/A, 1:1 and 1:0.6). The obtained depolymerized systems were analyzed by FTIR and NMR characterizations to understand the effect of both diamines on the degradation pathway. The use of bio-based BDA seemed to be more effective with respect to conventional EDA, owing to its stronger basicity (and thus higher nucleophilicity), corresponding to faster depolymerization rates. BDA-based depolymerized systems were then employed to prepare second-generation bio-based composite polyurethane foams by partial replacement of isocyanate components (20 wt%). The morphological, mechanical, and thermal conductivity properties of the second-generation polyurethane foams were evaluated. The best performances (σ10 %=71 ± 9 kPa, λ = 0.042 ± 0.015 W∙ m-1 ∙K-1) were attained by employing the lowest F/A ratio (1:0.6); this demonstrates their potential application in different sectors such as packaging or construction, fulfilling the paradigm of the circular economy.
2024
Efficient recycling pathway of bio-based composite polyurethane foams via sustainable diamine / Recupido, Federica; Lama, Giuseppe Cesare; Steffen, Sebastian; Dreyer, Christian; Seidlitz, Holger; Russo, Vincenzo; Lavorgna, Marino; De Luca Bossa, Ferdinando; Silvano, Selena; Boggioni, Laura; Verdolotti, Letizia. - In: ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY. - ISSN 0147-6513. - 269:(2024), p. 115758. [10.1016/j.ecoenv.2023.115758]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/951595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact