In the last few years, several efforts have been made to identify original strategies against glioblastoma multiforme (GBM): this requires a more detailed investigation of the molecular mechanism of GBM so that novel targets can be identified for new possible therapeutic agents. Here, using a combined biochemical and proteomic approach, we evaluated the ability of a blood-brain barrier-permeable 2,3-benzodiazepin-4-one, called 1g, to interfere with the activity and the expression of brain glycogen phosphorylase (PYGB) on U87MG cell line in parallel with the capability of this compound to inhibit the cell growth and cycle. Thus, our results highlighted PYGB as a potential therapeutic target in GBM prompting 1g as a capable anticancer drug thanks to its ability to negatively modulate the uptake and metabolism of glucose, the so-called "Warburg effect", whose increase is considered a common feature of cancer cells in respect of their normal counterparts.

A Proteomic Platform Unveils the Brain Glycogen Phosphorylase as a Potential Therapeutic Target for Glioblastoma Multiforme / Ferraro, Giusy; Mozzicafreddo, Matteo; Ettari, Roberta; Corsi, Lorenzo; Monti, Maria Chiara. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 23:(2022), pp. 8200-8215. [10.3390/ijms23158200]

A Proteomic Platform Unveils the Brain Glycogen Phosphorylase as a Potential Therapeutic Target for Glioblastoma Multiforme

Ferraro, Giusy;Monti, Maria Chiara
2022

Abstract

In the last few years, several efforts have been made to identify original strategies against glioblastoma multiforme (GBM): this requires a more detailed investigation of the molecular mechanism of GBM so that novel targets can be identified for new possible therapeutic agents. Here, using a combined biochemical and proteomic approach, we evaluated the ability of a blood-brain barrier-permeable 2,3-benzodiazepin-4-one, called 1g, to interfere with the activity and the expression of brain glycogen phosphorylase (PYGB) on U87MG cell line in parallel with the capability of this compound to inhibit the cell growth and cycle. Thus, our results highlighted PYGB as a potential therapeutic target in GBM prompting 1g as a capable anticancer drug thanks to its ability to negatively modulate the uptake and metabolism of glucose, the so-called "Warburg effect", whose increase is considered a common feature of cancer cells in respect of their normal counterparts.
2022
A Proteomic Platform Unveils the Brain Glycogen Phosphorylase as a Potential Therapeutic Target for Glioblastoma Multiforme / Ferraro, Giusy; Mozzicafreddo, Matteo; Ettari, Roberta; Corsi, Lorenzo; Monti, Maria Chiara. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 23:(2022), pp. 8200-8215. [10.3390/ijms23158200]
File in questo prodotto:
File Dimensione Formato  
107_IJMS_2022.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/951309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact