BACKGROUND: Aphytis melinus DeBach (Hymenoptera: Aphelinidae) is a highly effective biocontrol agent of the California red scale Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae). It is commercially reared and used for augmentative releases within integrated pest management programs. However, mass rearing of biocontrol agents can result in population bottlenecks and high levels of inbreeding and/or adaptation to the factitious rearing conditions. Although these factors can all negatively impact field performance of biocontrol agents, few empirical studies have examined the genetic consequences of mass rearing. We used double-digest RAD sequencing (ddRADseq) to investigate the effect of traditional mass rearing on genetic variation among insectary colonies of A. melinus relative to wild populations in native (Pakistan) and introduced (California) ranges. RESULTS: Analyses of up to 9700 single nucleotide polymorphisms (SNPs) revealed that insectary populations had less genomic variation than introduced populations. This was evidenced by fewer private alleles, reduced heterozygosity, and greater missing data in the insectary populations. Further, California insectaries formed a distinct genomic cluster relative to the other samples, a surprising result given that the insectary colonies were putatively established at different times and from different source populations. These differences were evident across most data sets also after we filtered out contaminant DNA from the most common host species (Aspidiotus nerii Bouché and A. aurantii). CONCLUSION: We hypothesize that this pattern would only result if: (i) directional selection for ‘captive’ phenotypes produces convergent patterns of genomic variation across insectaries; or (ii) the California insectary colonies were all founded from a unifying source population and/or that the insectaries regularly exchange ‘genetic’ stocks. We show that RADseq is an effective method to investigate the effects of mass rearing on genetics of biocontrol agents. © 2019 Society of Chemical Industry.

Genome-wide analyses of single nucleotide polymorphisms reveal the consequences of traditional mass-rearing on genetic variation in Aphytis melinus (Hymenoptera: Aphelinidae): the danger of putting all eggs in one basket / Gebiola, M.; Streicher, J. W.; Rugman-Jones, P. F.; Morse, J. G.; Stouthamer, R.. - In: PEST MANAGEMENT SCIENCE. - ISSN 1526-498X. - 75:11(2019), pp. 3102-3112. [10.1002/ps.5427]

Genome-wide analyses of single nucleotide polymorphisms reveal the consequences of traditional mass-rearing on genetic variation in Aphytis melinus (Hymenoptera: Aphelinidae): the danger of putting all eggs in one basket

Gebiola M.
;
2019

Abstract

BACKGROUND: Aphytis melinus DeBach (Hymenoptera: Aphelinidae) is a highly effective biocontrol agent of the California red scale Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae). It is commercially reared and used for augmentative releases within integrated pest management programs. However, mass rearing of biocontrol agents can result in population bottlenecks and high levels of inbreeding and/or adaptation to the factitious rearing conditions. Although these factors can all negatively impact field performance of biocontrol agents, few empirical studies have examined the genetic consequences of mass rearing. We used double-digest RAD sequencing (ddRADseq) to investigate the effect of traditional mass rearing on genetic variation among insectary colonies of A. melinus relative to wild populations in native (Pakistan) and introduced (California) ranges. RESULTS: Analyses of up to 9700 single nucleotide polymorphisms (SNPs) revealed that insectary populations had less genomic variation than introduced populations. This was evidenced by fewer private alleles, reduced heterozygosity, and greater missing data in the insectary populations. Further, California insectaries formed a distinct genomic cluster relative to the other samples, a surprising result given that the insectary colonies were putatively established at different times and from different source populations. These differences were evident across most data sets also after we filtered out contaminant DNA from the most common host species (Aspidiotus nerii Bouché and A. aurantii). CONCLUSION: We hypothesize that this pattern would only result if: (i) directional selection for ‘captive’ phenotypes produces convergent patterns of genomic variation across insectaries; or (ii) the California insectary colonies were all founded from a unifying source population and/or that the insectaries regularly exchange ‘genetic’ stocks. We show that RADseq is an effective method to investigate the effects of mass rearing on genetics of biocontrol agents. © 2019 Society of Chemical Industry.
2019
Genome-wide analyses of single nucleotide polymorphisms reveal the consequences of traditional mass-rearing on genetic variation in Aphytis melinus (Hymenoptera: Aphelinidae): the danger of putting all eggs in one basket / Gebiola, M.; Streicher, J. W.; Rugman-Jones, P. F.; Morse, J. G.; Stouthamer, R.. - In: PEST MANAGEMENT SCIENCE. - ISSN 1526-498X. - 75:11(2019), pp. 3102-3112. [10.1002/ps.5427]
File in questo prodotto:
File Dimensione Formato  
Genome‐wide analyses of single nucleotide polymorphisms reveal the consequences of traditional mass‐rearing on genetic variation in Aphytis melinus (Hymenoptera_ Aphelinidae)_ the danger of putting all eggs in one basket.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/951174
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact