Microgrids are currently seen as the future of power generation and distribution systems. This paper illustrates the optimization of the operation stage of the main components of a microgrid supplying the final demands for electricity, heating and cooling of a residential district. The optimization was performed with reference to four seasonal standard days and optimizing the operating costs or the primary energy use. The electricity production from a photovoltaic system and a combined heat and power (CHP) satisfies the local electricity demand. The heating demand is fulfilled with a gas-fired boiler, a CHP, a solar thermal collector and a reversible heat pump that is employed also for the cooling demand together with an absorbtion chiller. Moreover, a storage system for each demand is also included. The optimization model is formulated through a mixed-integer linear programming approach and implemented in MATLAB. The results show a reduction of costs ranging between about two and four times and a reduction of primary energy use between about two and five times with respect to the traditional scenario (electricity and gas from the grid).

Performance Optimization of a Residential Microgrid Balancing Economic and Energy Issues / Di Somma, Marialaura; Di Dio, Vincenzo; Favuzza, Salvatore; Montana, Francesco; Porgi, Vincenzo; Zizzo, Gaetano. - (2023), pp. -757. (Intervento presentato al convegno IEEE EUROCON 2023 - 20th International Conference on Smart Technologies tenutosi a Torino nel 6-8 Luglio 2023) [10.1109/EUROCON56442.2023.10198931].

Performance Optimization of a Residential Microgrid Balancing Economic and Energy Issues

Di Somma, Marialaura;
2023

Abstract

Microgrids are currently seen as the future of power generation and distribution systems. This paper illustrates the optimization of the operation stage of the main components of a microgrid supplying the final demands for electricity, heating and cooling of a residential district. The optimization was performed with reference to four seasonal standard days and optimizing the operating costs or the primary energy use. The electricity production from a photovoltaic system and a combined heat and power (CHP) satisfies the local electricity demand. The heating demand is fulfilled with a gas-fired boiler, a CHP, a solar thermal collector and a reversible heat pump that is employed also for the cooling demand together with an absorbtion chiller. Moreover, a storage system for each demand is also included. The optimization model is formulated through a mixed-integer linear programming approach and implemented in MATLAB. The results show a reduction of costs ranging between about two and four times and a reduction of primary energy use between about two and five times with respect to the traditional scenario (electricity and gas from the grid).
2023
978-1-6654-6397-3
Performance Optimization of a Residential Microgrid Balancing Economic and Energy Issues / Di Somma, Marialaura; Di Dio, Vincenzo; Favuzza, Salvatore; Montana, Francesco; Porgi, Vincenzo; Zizzo, Gaetano. - (2023), pp. -757. (Intervento presentato al convegno IEEE EUROCON 2023 - 20th International Conference on Smart Technologies tenutosi a Torino nel 6-8 Luglio 2023) [10.1109/EUROCON56442.2023.10198931].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/951138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact