We study the shape of solutions to certain variational problems in Sobolev spaces with weights that are powers of ∣x∣. In particular, we detect situations when the extremal functions lack symmetry properties such as radial symmetry and antisymmetry. We also prove an isoperimetric inequality for the first nonzero eigenvalue of a weighted Neumann problem.

Shape of extremal functions for weighted Sobolev-type inequalities / Brock, F.; Chiacchio, F.; Croce, G.; Mercaldo, A.. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - (2025), pp. 1-24. [10.1515/anona-2025-0103]

Shape of extremal functions for weighted Sobolev-type inequalities

F. Chiacchio;A. Mercaldo
2025

Abstract

We study the shape of solutions to certain variational problems in Sobolev spaces with weights that are powers of ∣x∣. In particular, we detect situations when the extremal functions lack symmetry properties such as radial symmetry and antisymmetry. We also prove an isoperimetric inequality for the first nonzero eigenvalue of a weighted Neumann problem.
2025
Shape of extremal functions for weighted Sobolev-type inequalities / Brock, F.; Chiacchio, F.; Croce, G.; Mercaldo, A.. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - (2025), pp. 1-24. [10.1515/anona-2025-0103]
File in questo prodotto:
File Dimensione Formato  
Brock_Chiacchio_Croce_Mercaldo_ANONA_2025.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/950193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact