We study the shape of solutions to certain variational problems in Sobolev spaces with weights that are powers of ∣x∣. In particular, we detect situations when the extremal functions lack symmetry properties such as radial symmetry and antisymmetry. We also prove an isoperimetric inequality for the first nonzero eigenvalue of a weighted Neumann problem.
Shape of extremal functions for weighted Sobolev-type inequalities / Brock, F.; Chiacchio, F.; Croce, G.; Mercaldo, A.. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - (2025), pp. 1-24. [10.1515/anona-2025-0103]
Shape of extremal functions for weighted Sobolev-type inequalities
F. Chiacchio;A. Mercaldo
2025
Abstract
We study the shape of solutions to certain variational problems in Sobolev spaces with weights that are powers of ∣x∣. In particular, we detect situations when the extremal functions lack symmetry properties such as radial symmetry and antisymmetry. We also prove an isoperimetric inequality for the first nonzero eigenvalue of a weighted Neumann problem.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Brock_Chiacchio_Croce_Mercaldo_ANONA_2025.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.09 MB
Formato
Adobe PDF
|
4.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


