In this paper we study the class G of all connected bipartite graphs whose adjacency spectrum, apart from the maximum and the minimum eigenvalue, just contains 0and ±1. It turns out that G consists of five infinite families, each of them containing an infinite subfamily of integral graphs, and seven sporadic graphs. Moreover, we find all graphs in G determined by their spectrum and identify the cospectral mates of the remaining ones.

Bipartite graphs with all but two eigenvalues equal to 0 and ±1 / Li, X.; Wang, J.; Brunetti, M.. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - 347:4(2024). [10.1016/j.disc.2023.113858]

Bipartite graphs with all but two eigenvalues equal to 0 and ±1

Brunetti M.
2024

Abstract

In this paper we study the class G of all connected bipartite graphs whose adjacency spectrum, apart from the maximum and the minimum eigenvalue, just contains 0and ±1. It turns out that G consists of five infinite families, each of them containing an infinite subfamily of integral graphs, and seven sporadic graphs. Moreover, we find all graphs in G determined by their spectrum and identify the cospectral mates of the remaining ones.
2024
Bipartite graphs with all but two eigenvalues equal to 0 and ±1 / Li, X.; Wang, J.; Brunetti, M.. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - 347:4(2024). [10.1016/j.disc.2023.113858]
File in questo prodotto:
File Dimensione Formato  
Bipartite_graphs_Li_Wang_Brunetti.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 612.19 kB
Formato Adobe PDF
612.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/949664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact