The identification of the percolation threshold (Φc) in short fiber composites is a challenging problem in Composite Science. Above Φc the fibers form a continuous network that causes substantial changes in mechanical and transport properties. Besides, percolation of natural fibers in biodegradable polymer matrices allows water and other pro-degradative species to access the inner parts of the material from the external environment, accelerating biodegradation. Whether such a speeding up is desired or not, assessing Φc in composites is of utmost importance. Unfortunately, natural fibers are not conductive and exhibit highly variable shape and physical properties. This prevents the use of many experimental and theoretical approaches for the estimate of Φc. Here we propose an original rheological approach borrowed from the viscoelastic modelling of polymer nanocomposites. The method was applied to two systems made of poly(lactic acid) filled with hemp or kenaf fibers (average length <500 μm, average length-to-diameter ratio <5). The estimate of Φc (∼10.1 and 19.5 vol% for the hemp- and kenaf-based composite, respectively) required a single set of simple linear viscoelastic measurements, and the computed values were in good agreement with those obtained through time-consuming (measurement times >3 weeks) dielectric spectroscopy analyses (∼10.1 and 18.5 vol%).

A simple rheological method for the experimental assessment of the fiber percolation threshold in short fiber biocomposites / Vitiello, L.; Salzano de Luna, M.; Ambrogi, V.; Filippone, G.. - In: COMPOSITES SCIENCE AND TECHNOLOGY. - ISSN 0266-3538. - 245:(2024), p. 110345. [10.1016/j.compscitech.2023.110345]

A simple rheological method for the experimental assessment of the fiber percolation threshold in short fiber biocomposites

Vitiello L.
Primo
;
Salzano de Luna M.
Secondo
;
Ambrogi V.
Penultimo
;
Filippone G.
Ultimo
2024

Abstract

The identification of the percolation threshold (Φc) in short fiber composites is a challenging problem in Composite Science. Above Φc the fibers form a continuous network that causes substantial changes in mechanical and transport properties. Besides, percolation of natural fibers in biodegradable polymer matrices allows water and other pro-degradative species to access the inner parts of the material from the external environment, accelerating biodegradation. Whether such a speeding up is desired or not, assessing Φc in composites is of utmost importance. Unfortunately, natural fibers are not conductive and exhibit highly variable shape and physical properties. This prevents the use of many experimental and theoretical approaches for the estimate of Φc. Here we propose an original rheological approach borrowed from the viscoelastic modelling of polymer nanocomposites. The method was applied to two systems made of poly(lactic acid) filled with hemp or kenaf fibers (average length <500 μm, average length-to-diameter ratio <5). The estimate of Φc (∼10.1 and 19.5 vol% for the hemp- and kenaf-based composite, respectively) required a single set of simple linear viscoelastic measurements, and the computed values were in good agreement with those obtained through time-consuming (measurement times >3 weeks) dielectric spectroscopy analyses (∼10.1 and 18.5 vol%).
2024
A simple rheological method for the experimental assessment of the fiber percolation threshold in short fiber biocomposites / Vitiello, L.; Salzano de Luna, M.; Ambrogi, V.; Filippone, G.. - In: COMPOSITES SCIENCE AND TECHNOLOGY. - ISSN 0266-3538. - 245:(2024), p. 110345. [10.1016/j.compscitech.2023.110345]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/946785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact