: Valinomycin is a potent ionophore known for its ability to transport potassium ions across biological membranes. The study focuses on the hydroxylated analogues of valinomycin (HyVLMs) and compares their energy profiles and capabilities for transporting potassium ions across phospholipid membranes. Using metadynamics, we investigated the energy profiles of wildtype valinomycin (VLM_1) and its three hydroxylated analogues (VLM_2, VLM_3, and VLM_4). We observed that all analogues exhibited energy maxima in the centre of the membrane and preferred positions below the phospholipid heads. Furthermore, the entry barriers for membrane penetration were similar among the analogues, suggesting that the hydroxyl group did not significantly affect their passage through the membrane. Transition state calculations provided insights into the ability of valinomycin analogues to capture potassium ions, with VLM_4 showing the lowest activation energy and VLM_2 displaying the highest. Our findings contribute to understanding the mechanisms of potassium transport by valinomycin analogues and highlight their potential as ionophores. The presence of the hydroxyl group is of particular importance because it paves the way for subsequent chemical modifications and the synthesis of new antiviral agents with reduced intrinsic toxicity.

Theoretical investigation of hydroxylated analogues of valinomycin as potassium transporter / Sessa, Lucia; Concilio, Simona; Marrafino, Francesco; Sarkar, Arkadeep; Diana, Rosita; Piotto, Stefano. - In: COMPUTATIONAL BIOLOGY AND CHEMISTRY. - ISSN 1476-9271. - 106:(2023), p. 107936. [10.1016/j.compbiolchem.2023.107936]

Theoretical investigation of hydroxylated analogues of valinomycin as potassium transporter

Sessa, Lucia;Concilio, Simona;Diana, Rosita;Piotto, Stefano
2023

Abstract

: Valinomycin is a potent ionophore known for its ability to transport potassium ions across biological membranes. The study focuses on the hydroxylated analogues of valinomycin (HyVLMs) and compares their energy profiles and capabilities for transporting potassium ions across phospholipid membranes. Using metadynamics, we investigated the energy profiles of wildtype valinomycin (VLM_1) and its three hydroxylated analogues (VLM_2, VLM_3, and VLM_4). We observed that all analogues exhibited energy maxima in the centre of the membrane and preferred positions below the phospholipid heads. Furthermore, the entry barriers for membrane penetration were similar among the analogues, suggesting that the hydroxyl group did not significantly affect their passage through the membrane. Transition state calculations provided insights into the ability of valinomycin analogues to capture potassium ions, with VLM_4 showing the lowest activation energy and VLM_2 displaying the highest. Our findings contribute to understanding the mechanisms of potassium transport by valinomycin analogues and highlight their potential as ionophores. The presence of the hydroxyl group is of particular importance because it paves the way for subsequent chemical modifications and the synthesis of new antiviral agents with reduced intrinsic toxicity.
2023
Theoretical investigation of hydroxylated analogues of valinomycin as potassium transporter / Sessa, Lucia; Concilio, Simona; Marrafino, Francesco; Sarkar, Arkadeep; Diana, Rosita; Piotto, Stefano. - In: COMPUTATIONAL BIOLOGY AND CHEMISTRY. - ISSN 1476-9271. - 106:(2023), p. 107936. [10.1016/j.compbiolchem.2023.107936]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1476927123001275-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 4.16 MB
Formato Adobe PDF
4.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/939613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact