We study minimal graphs with linear growth on complete manifolds M^m with Ric≥0. Under the further assumption that the (m−2)-th Ricci curvature in radial direction is bounded below by Cr(x)^{−2}, we prove that any such graph, if nonconstant, forces tangent cones at infinity of M to split off a line. Note that M is not required to have Euclidean volume growth. We also show that M may not split off any line. Our result parallels that obtained by Cheeger, Colding and Minicozzi for harmonic functions. The core of the paper is a new refinement of Korevaar's gradient estimate for minimal graphs, together with heat equation techniques.

Nonnegative Ricci curvature and minimal graphs with linear growth / Colombo, Giulio; Souza Gama, Eddygledson; Mari, Luciano; Rigoli, Marco. - In: ANALYSIS & PDE. - ISSN 2157-5045. - 17:7(2024), pp. 2275-2310. [10.2140/apde.2024.17.2275]

Nonnegative Ricci curvature and minimal graphs with linear growth

Giulio Colombo
;
2024

Abstract

We study minimal graphs with linear growth on complete manifolds M^m with Ric≥0. Under the further assumption that the (m−2)-th Ricci curvature in radial direction is bounded below by Cr(x)^{−2}, we prove that any such graph, if nonconstant, forces tangent cones at infinity of M to split off a line. Note that M is not required to have Euclidean volume growth. We also show that M may not split off any line. Our result parallels that obtained by Cheeger, Colding and Minicozzi for harmonic functions. The core of the paper is a new refinement of Korevaar's gradient estimate for minimal graphs, together with heat equation techniques.
2024
Nonnegative Ricci curvature and minimal graphs with linear growth / Colombo, Giulio; Souza Gama, Eddygledson; Mari, Luciano; Rigoli, Marco. - In: ANALYSIS & PDE. - ISSN 2157-5045. - 17:7(2024), pp. 2275-2310. [10.2140/apde.2024.17.2275]
File in questo prodotto:
File Dimensione Formato  
2112.09886.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri
apde-v17-n7-p03-s.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 790.11 kB
Formato Adobe PDF
790.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/938689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact