In the article, the Non-Relativistic Effective Field Theory (NREFT) rate calculations were determined using the wimpy_nreft software [1], which was updated on September 29, 2021, to include a previously missing (q/mN)2 factor in the implementation. This update affects the results related to the O3 operator that now scales as (q/mN)4 instead of (q/mN)2. The corrections to Figs. 2, 6, 9, 10, and 11 are presented below. The couplings to O3 constrained by this analysis are higher than those reported in the article. Additionally: (i) In Sec. V A, operator O3 is suppressed at low recoil energies, exhibiting now a peak around 50 keV (Fig. 2). (ii) The third paragraph in Sec. V B should read as follows: “The operator O3 is proportional to (q/mN)4, while O11 goes as (q/mN)2. O3 is described by the F'' multipole operator [discussed in Eqs. (9) and (10)], while O11 is described by M. Since the former operator is related to spin-orbit coupling, it couples to the two unpaired neutrons and proton holes in 40 Ar , rather than to all 40 nucleons. This leads to a suppression of ~10 2 in addition to the extra q2 suppression.” (iii) In Sec. V F, the statement “Operators that introduce a factor of q2 to the DM response function, such as O3, O5, and O11 change the shape of the recoil energy spectrum, compared to O1” should read “Operators that introduce a factor of q2 or q4 to the DM response function, such as O3, O5, and O11 change the shape of the recoil energy spectrum, compared to O1.” (iv) The sentence in Sec. VI “Constraints on operators proportional to v? are weaker than those proportional to q, which are weaker than those proportional to neither” should read “Constraints on operators proportional to vn? are weaker than those proportional to q raised to the same power, which in turn are weaker than constant couplings.” (v) In Sec. VI, exclusion curves on O3 and data to reproduce its recoil energy spectra were uploaded to a new Zenodo version [2]. (Figure Presented).

Erratum: Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector (Physical Review D (2020) 102 (082001) DOI: 10.1103/PhysRevD.102.082001) / Adhikari, P.; Ajaj, R.; Auty, D. J.; Bina, C. E.; Bonivento, W.; Boulay, M. G.; Cadeddu, M.; Cai, B.; Cardenas-Montes, M.; Cavuoti, S.; Chen, Y.; Cleveland, B. T.; Corning, J. M.; Daugherty, S.; Delgobbo, P.; Di Stefano, P.; Doria, L.; Dunford, M.; Erlandson, A.; Farahani, S. S.; Fatemighomi, N.; Fiorillo, G.; Gallacher, D.; Garces, E. A.; Garcia Abia, P.; Garg, S.; Giampa, P.; Goeldi, D.; Gorel, P.; Graham, K.; Grobov, A.; Hallin, A. L.; Hamstra, M.; Hugues, T.; Ilyasov, A.; Joy, A.; Jigmeddorj, B.; Jillings, C. J.; Kamaev, O.; Kaur, G.; Kemp, A.; Kochanek, I.; Kuzniak, M.; Lai, M.; Langrock, S.; Lehnert, B.; Levashko, N.; Li, X.; Litvinov, O.; Lock, J.; Longo, G.; Machulin, I.; Mcdonald, A. B.; Mcelroy, T.; Mclaughlin, J. B.; Mielnichuk, C.; Monroe, J.; Oliviero, G.; Pal, S.; Peeters, S. J. M.; Pesudo, V.; Piro, M. -C.; Pollmann, T. R.; Rand, E. T.; Rethmeier, C.; Retiere, F.; Rodriguez-Garcia, I.; Roszkowski, L.; Sanchez Garcia, E.; Sanchez-Pastor, T.; Santorelli, R.; Sinclair, D.; Skensved, P.; Smith, B.; Smith, N. J. T.; Sonley, T.; Stainforth, R.; Stringer, M.; Sur, B.; Vazquez-Jauregui, E.; Viel, S.; Vincent, A. C.; Walding, J.; Waqar, M.; Ward, M.; Westerdale, S.; Willis, J.; Zuniga-Reyes, A.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 105:2(2022). [10.1103/PhysRevD.105.029901]

Erratum: Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector (Physical Review D (2020) 102 (082001) DOI: 10.1103/PhysRevD.102.082001)

Cavuoti S.;Fiorillo G.;Longo G.;
2022

Abstract

In the article, the Non-Relativistic Effective Field Theory (NREFT) rate calculations were determined using the wimpy_nreft software [1], which was updated on September 29, 2021, to include a previously missing (q/mN)2 factor in the implementation. This update affects the results related to the O3 operator that now scales as (q/mN)4 instead of (q/mN)2. The corrections to Figs. 2, 6, 9, 10, and 11 are presented below. The couplings to O3 constrained by this analysis are higher than those reported in the article. Additionally: (i) In Sec. V A, operator O3 is suppressed at low recoil energies, exhibiting now a peak around 50 keV (Fig. 2). (ii) The third paragraph in Sec. V B should read as follows: “The operator O3 is proportional to (q/mN)4, while O11 goes as (q/mN)2. O3 is described by the F'' multipole operator [discussed in Eqs. (9) and (10)], while O11 is described by M. Since the former operator is related to spin-orbit coupling, it couples to the two unpaired neutrons and proton holes in 40 Ar , rather than to all 40 nucleons. This leads to a suppression of ~10 2 in addition to the extra q2 suppression.” (iii) In Sec. V F, the statement “Operators that introduce a factor of q2 to the DM response function, such as O3, O5, and O11 change the shape of the recoil energy spectrum, compared to O1” should read “Operators that introduce a factor of q2 or q4 to the DM response function, such as O3, O5, and O11 change the shape of the recoil energy spectrum, compared to O1.” (iv) The sentence in Sec. VI “Constraints on operators proportional to v? are weaker than those proportional to q, which are weaker than those proportional to neither” should read “Constraints on operators proportional to vn? are weaker than those proportional to q raised to the same power, which in turn are weaker than constant couplings.” (v) In Sec. VI, exclusion curves on O3 and data to reproduce its recoil energy spectra were uploaded to a new Zenodo version [2]. (Figure Presented).
2022
Erratum: Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector (Physical Review D (2020) 102 (082001) DOI: 10.1103/PhysRevD.102.082001) / Adhikari, P.; Ajaj, R.; Auty, D. J.; Bina, C. E.; Bonivento, W.; Boulay, M. G.; Cadeddu, M.; Cai, B.; Cardenas-Montes, M.; Cavuoti, S.; Chen, Y.; Cleveland, B. T.; Corning, J. M.; Daugherty, S.; Delgobbo, P.; Di Stefano, P.; Doria, L.; Dunford, M.; Erlandson, A.; Farahani, S. S.; Fatemighomi, N.; Fiorillo, G.; Gallacher, D.; Garces, E. A.; Garcia Abia, P.; Garg, S.; Giampa, P.; Goeldi, D.; Gorel, P.; Graham, K.; Grobov, A.; Hallin, A. L.; Hamstra, M.; Hugues, T.; Ilyasov, A.; Joy, A.; Jigmeddorj, B.; Jillings, C. J.; Kamaev, O.; Kaur, G.; Kemp, A.; Kochanek, I.; Kuzniak, M.; Lai, M.; Langrock, S.; Lehnert, B.; Levashko, N.; Li, X.; Litvinov, O.; Lock, J.; Longo, G.; Machulin, I.; Mcdonald, A. B.; Mcelroy, T.; Mclaughlin, J. B.; Mielnichuk, C.; Monroe, J.; Oliviero, G.; Pal, S.; Peeters, S. J. M.; Pesudo, V.; Piro, M. -C.; Pollmann, T. R.; Rand, E. T.; Rethmeier, C.; Retiere, F.; Rodriguez-Garcia, I.; Roszkowski, L.; Sanchez Garcia, E.; Sanchez-Pastor, T.; Santorelli, R.; Sinclair, D.; Skensved, P.; Smith, B.; Smith, N. J. T.; Sonley, T.; Stainforth, R.; Stringer, M.; Sur, B.; Vazquez-Jauregui, E.; Viel, S.; Vincent, A. C.; Walding, J.; Waqar, M.; Ward, M.; Westerdale, S.; Willis, J.; Zuniga-Reyes, A.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 105:2(2022). [10.1103/PhysRevD.105.029901]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/935217
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact