This research focuses on the requirements management phase in the conceptual stage following a Systems Engineering approach. The development of a parametric associative master model is useful to implement requirements and available knowledge in the CAD model. The vertical decomposition from higher level requirements to lower level requirements is carried out. The decomposition of design parameters follows the mapping process according to Axiomatic Design principles. The functional requirements and design parameters relations enable to develop the parametric associative master model. Modifications related to requirements can be automatically propagated to the down-stream geometries, maintaining the relationships among geometrical features in the following design steps to choose the optimal candidate. The case study deals with the mechanical design of nuclear fusion devices focusing on the improvement of the concept design of neutron shielding plates, a divertor subsystem added to satisfy a high level requirement about divertor shielding performances on vacuum vessel. Among several variants, a few feasible configurations are generated.

Requirements Management in Master Model Development: A Case Study in Fusion Engineering / Lanzotti, F. G.; Marzullo, D.; Imbriani, V.; Mazzone, G.; You, J. -H.; Di Gironimo, G.. - (2023), pp. 466-478. (Intervento presentato al convegno International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing, JCM 2022 tenutosi a ita nel 2022) [10.1007/978-3-031-15928-2_41].

Requirements Management in Master Model Development: A Case Study in Fusion Engineering

Lanzotti F. G.;Marzullo D.;Imbriani V.;Di Gironimo G.
2023

Abstract

This research focuses on the requirements management phase in the conceptual stage following a Systems Engineering approach. The development of a parametric associative master model is useful to implement requirements and available knowledge in the CAD model. The vertical decomposition from higher level requirements to lower level requirements is carried out. The decomposition of design parameters follows the mapping process according to Axiomatic Design principles. The functional requirements and design parameters relations enable to develop the parametric associative master model. Modifications related to requirements can be automatically propagated to the down-stream geometries, maintaining the relationships among geometrical features in the following design steps to choose the optimal candidate. The case study deals with the mechanical design of nuclear fusion devices focusing on the improvement of the concept design of neutron shielding plates, a divertor subsystem added to satisfy a high level requirement about divertor shielding performances on vacuum vessel. Among several variants, a few feasible configurations are generated.
2023
978-3-031-15927-5
978-3-031-15928-2
Requirements Management in Master Model Development: A Case Study in Fusion Engineering / Lanzotti, F. G.; Marzullo, D.; Imbriani, V.; Mazzone, G.; You, J. -H.; Di Gironimo, G.. - (2023), pp. 466-478. (Intervento presentato al convegno International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing, JCM 2022 tenutosi a ita nel 2022) [10.1007/978-3-031-15928-2_41].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/928801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact