Efficient data movement in multi-node systems is a crucial issue at the crossroads of scien-tific computing, big data, and high-performance computing, impacting demanding data acquisition applications from high-energy physics to astronomy, where dedicated accelerators such as FPGA devices play a key role coupled with high-performance interconnect technologies. Building on the outcome of the RECIPE Horizon 2020 research project, this work evaluates the use of high-bandwidth interconnect standards, namely InfiniBand EDR and HDR, along with remote direct memory access functions for direct exposure of FPGA accelerator memory across a multi-node system. The prototype we present aims at avoiding dedicated network interfaces built in the FPGA accelerator itself, leaving most of the resources for user acceleration and supporting state-of-the-art interconnect technologies. We present the detail of the proposed system and a quantitative evaluation in terms of end-to-end bandwidth as concretely measured with a real-world FPGA-based multi-node HPC workload.

Evaluation of HPC acceleration and interconnect technologies for high-throughput data acquisition / Cilardo, A.. - In: SENSORS. - ISSN 1424-8220. - 21:22(2021), p. 7759. [10.3390/s21227759]

Evaluation of HPC acceleration and interconnect technologies for high-throughput data acquisition

Cilardo A.
2021

Abstract

Efficient data movement in multi-node systems is a crucial issue at the crossroads of scien-tific computing, big data, and high-performance computing, impacting demanding data acquisition applications from high-energy physics to astronomy, where dedicated accelerators such as FPGA devices play a key role coupled with high-performance interconnect technologies. Building on the outcome of the RECIPE Horizon 2020 research project, this work evaluates the use of high-bandwidth interconnect standards, namely InfiniBand EDR and HDR, along with remote direct memory access functions for direct exposure of FPGA accelerator memory across a multi-node system. The prototype we present aims at avoiding dedicated network interfaces built in the FPGA accelerator itself, leaving most of the resources for user acceleration and supporting state-of-the-art interconnect technologies. We present the detail of the proposed system and a quantitative evaluation in terms of end-to-end bandwidth as concretely measured with a real-world FPGA-based multi-node HPC workload.
2021
Evaluation of HPC acceleration and interconnect technologies for high-throughput data acquisition / Cilardo, A.. - In: SENSORS. - ISSN 1424-8220. - 21:22(2021), p. 7759. [10.3390/s21227759]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/927886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact