Livestock digestate provides nutrients and organic matter to the soil while increasing agricultural sustainability. Nevertheless, nitrogen (N) losses due to the nutrient surplus in regions characterized by intensive animal farming activities still represent an unsolved issue. For this purpose, digestate needs proper treatment and management to avoid N losses in the environment. In the livestock farming context, anaerobic digestion (AD) can be accompanied by an ammonia stripping (AS) process for N recovery. This paper aims to investigate the feasibility AS prior to and after AD of the manure, focusing on two different livestock farms, representative of dairy cattle and pig breeding in southern Italy. AS was performed at a lab scale by injecting microbubbles of air, which allowed the pH to increase, and thus the removal of ammonia. The results show that treating a dairy raw slurry with high intermediate alkalinity (IA) (6707 mg CaCO3 L−1) with AS may not be convenient in terms of total ammonia nitrogen (TAN) reduction. As a matter of fact, the loss of buffering capacity during the stripping process resulted in a pH never exceeding the value of 9, which could not promote free ammonia volatilization, whereas integrating AD with AS allowed us to obtain a 34% higher TAN reduction under the same stripping conditions at a temperature (T) of 38 °C and a gas-to-liquid ratio (G/L) of 1:1. Therefore, the AS removal efficiency strongly depends on the characteristics (mainly IA) of the treated matrix. High IA values suggest a possible high concentration of volatile fatty acids, which hinders pH increases and, thus, enables ammonia stripping. Despite the initial matrix origin, a low IA compared to the total alkalinity (TA) (<20% of TA) ensures a greater ammonia removal efficiency, which could be similar between digestate and raw manure in the same operative process conditions. Nonetheless, the amount of ammonia stripped is related to the initial TAN concentration of the specific matrix.

Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion / SCOTTO DI PERTA, Ester; Grieco, Raffaele; Papirio, Stefano; Esposito, Giovanni; Cervelli, Elena; Bovo, Marco; Pindozzi, Stefania. - In: SUSTAINABILITY. - ISSN 2071-1050. - 15:12(2023), p. 9402. [10.3390/su15129402]

Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion

Ester Scotto di Perta
;
Raffaele Grieco;Stefano Papirio;Giovanni Esposito;Elena Cervelli;Stefania Pindozzi
2023

Abstract

Livestock digestate provides nutrients and organic matter to the soil while increasing agricultural sustainability. Nevertheless, nitrogen (N) losses due to the nutrient surplus in regions characterized by intensive animal farming activities still represent an unsolved issue. For this purpose, digestate needs proper treatment and management to avoid N losses in the environment. In the livestock farming context, anaerobic digestion (AD) can be accompanied by an ammonia stripping (AS) process for N recovery. This paper aims to investigate the feasibility AS prior to and after AD of the manure, focusing on two different livestock farms, representative of dairy cattle and pig breeding in southern Italy. AS was performed at a lab scale by injecting microbubbles of air, which allowed the pH to increase, and thus the removal of ammonia. The results show that treating a dairy raw slurry with high intermediate alkalinity (IA) (6707 mg CaCO3 L−1) with AS may not be convenient in terms of total ammonia nitrogen (TAN) reduction. As a matter of fact, the loss of buffering capacity during the stripping process resulted in a pH never exceeding the value of 9, which could not promote free ammonia volatilization, whereas integrating AD with AS allowed us to obtain a 34% higher TAN reduction under the same stripping conditions at a temperature (T) of 38 °C and a gas-to-liquid ratio (G/L) of 1:1. Therefore, the AS removal efficiency strongly depends on the characteristics (mainly IA) of the treated matrix. High IA values suggest a possible high concentration of volatile fatty acids, which hinders pH increases and, thus, enables ammonia stripping. Despite the initial matrix origin, a low IA compared to the total alkalinity (TA) (<20% of TA) ensures a greater ammonia removal efficiency, which could be similar between digestate and raw manure in the same operative process conditions. Nonetheless, the amount of ammonia stripped is related to the initial TAN concentration of the specific matrix.
2023
Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion / SCOTTO DI PERTA, Ester; Grieco, Raffaele; Papirio, Stefano; Esposito, Giovanni; Cervelli, Elena; Bovo, Marco; Pindozzi, Stefania. - In: SUSTAINABILITY. - ISSN 2071-1050. - 15:12(2023), p. 9402. [10.3390/su15129402]
File in questo prodotto:
File Dimensione Formato  
2023 - Scotto di Perta et al. - Sustainability - Ammonia air stripping from different livestock effluents.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/926703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact