Fixed-bed pyrolysis of torrefied spruce wood, for a heating temperature of 800 K, results in char yields between about 27–57 wt% (versus 23 wt% for untreated wood), depending on both pre-treatment temperatures (533–583 K) and holding times (8–25 min). In this study char oxidation behavior and kinetics are investigated by means of thermogravimetric analysis. The differential thermogravimetric curves always showed a low-temperature zone of slow rates (oxidative devolatilization), followed by a high-rate zone with a well-defined peak (oxidation). As the torrefaction severity increases, the temperature range of the oxidative devolatilization enlarges. Moreover, the oxidation rates become slower (both burning and burnout temperatures tend to increase). As already found for untreated wood chars, the two stages are well described by a linear and a power-law rate reaction, respectively. Volatiles released from the devolatilizations are approximately around 20 wt%, but torrefaction causes lower activation energies (66–92 kJ/mol versus 117 kJ/mol). The oxidation activation energies also decreas (170–168 kJ/mol versus 193 kJ/mol), accompanied by small variations in the reaction order.

Oxidative Conversion of Chars Generated from the Fixed-Bed Pyrolysis of Wood Torrefied at Different Temperatures and Holding Times / Branca, Carmen; DI BLASI, Colomba. - In: PROCESSES. - ISSN 2227-9717. - 11:4(2023), pp. 1-12. [10.3390/pr11040997]

Oxidative Conversion of Chars Generated from the Fixed-Bed Pyrolysis of Wood Torrefied at Different Temperatures and Holding Times

Colomba Di Blasi
Secondo
2023

Abstract

Fixed-bed pyrolysis of torrefied spruce wood, for a heating temperature of 800 K, results in char yields between about 27–57 wt% (versus 23 wt% for untreated wood), depending on both pre-treatment temperatures (533–583 K) and holding times (8–25 min). In this study char oxidation behavior and kinetics are investigated by means of thermogravimetric analysis. The differential thermogravimetric curves always showed a low-temperature zone of slow rates (oxidative devolatilization), followed by a high-rate zone with a well-defined peak (oxidation). As the torrefaction severity increases, the temperature range of the oxidative devolatilization enlarges. Moreover, the oxidation rates become slower (both burning and burnout temperatures tend to increase). As already found for untreated wood chars, the two stages are well described by a linear and a power-law rate reaction, respectively. Volatiles released from the devolatilizations are approximately around 20 wt%, but torrefaction causes lower activation energies (66–92 kJ/mol versus 117 kJ/mol). The oxidation activation energies also decreas (170–168 kJ/mol versus 193 kJ/mol), accompanied by small variations in the reaction order.
2023
Oxidative Conversion of Chars Generated from the Fixed-Bed Pyrolysis of Wood Torrefied at Different Temperatures and Holding Times / Branca, Carmen; DI BLASI, Colomba. - In: PROCESSES. - ISSN 2227-9717. - 11:4(2023), pp. 1-12. [10.3390/pr11040997]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/921328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact