: Glucans are major biomaterials on the earth, with α-(1→4)-glucans (i. e., amylose) and β-(1→4)-glucans (i. e., cellulose) being the most abundant ones, which are relevant to energy storage and structural function, respectively. Interestingly, (1→4)-glucans with alternate α/β-linkages, namely herewith amycellulose, have never been disclosed in nature. Here we report a robust glycosylation protocol for the stereoselective construction of the 1,2-cis-α- and 1,2-trans-β-glucosidic linkages, which employs an optimal combination of glycosyl N-phenyltrifluoroacetimidates as donors, TMSNTf2 as promoter, CH2 Cl2 /nitrile or CH2 Cl2 /THF as solvents. A broad substrate scope has been demonstrated by coupling five imidate donors with eight glycosyl acceptors, in which most of the glycosylations lead to high yield and exclusively 1,2-cis-α- or 1,2-trans-β-selectivity. Applying this glycosylation protocol and with an iterative manner, the unprecedented α/β-alternate (1→4)-glucans up to a 16-mer have been synthesized. Differently from amylose, that adopts a compact helicoidal arrangement, the synthetic amycellulose features an extended ribbon-like conformation, comparable to the extended shape of cellulose.

Synthesis of Unprecedented α/β-Alternate (1→4)-Glucans via Stereoselective Iterative Glycosylation / Yang, Fuzhu; Sun, Yishan; Xu, Peng; Molinaro, Antonio; Silipo, Alba; Yu, Biao. - In: CHEMISTRY. - ISSN 1521-3765. - (2023), p. e202300659. [10.1002/chem.202300659]

Synthesis of Unprecedented α/β-Alternate (1→4)-Glucans via Stereoselective Iterative Glycosylation

Molinaro, Antonio;Silipo, Alba
;
2023

Abstract

: Glucans are major biomaterials on the earth, with α-(1→4)-glucans (i. e., amylose) and β-(1→4)-glucans (i. e., cellulose) being the most abundant ones, which are relevant to energy storage and structural function, respectively. Interestingly, (1→4)-glucans with alternate α/β-linkages, namely herewith amycellulose, have never been disclosed in nature. Here we report a robust glycosylation protocol for the stereoselective construction of the 1,2-cis-α- and 1,2-trans-β-glucosidic linkages, which employs an optimal combination of glycosyl N-phenyltrifluoroacetimidates as donors, TMSNTf2 as promoter, CH2 Cl2 /nitrile or CH2 Cl2 /THF as solvents. A broad substrate scope has been demonstrated by coupling five imidate donors with eight glycosyl acceptors, in which most of the glycosylations lead to high yield and exclusively 1,2-cis-α- or 1,2-trans-β-selectivity. Applying this glycosylation protocol and with an iterative manner, the unprecedented α/β-alternate (1→4)-glucans up to a 16-mer have been synthesized. Differently from amylose, that adopts a compact helicoidal arrangement, the synthetic amycellulose features an extended ribbon-like conformation, comparable to the extended shape of cellulose.
2023
Synthesis of Unprecedented α/β-Alternate (1→4)-Glucans via Stereoselective Iterative Glycosylation / Yang, Fuzhu; Sun, Yishan; Xu, Peng; Molinaro, Antonio; Silipo, Alba; Yu, Biao. - In: CHEMISTRY. - ISSN 1521-3765. - (2023), p. e202300659. [10.1002/chem.202300659]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/920309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact