The employment of chemical agents in the food industry is raising several concerns by consumers and is leading to an increasing interest in natural food preservatives. Among alternatives, host defense peptides (HDPs) have attracted great interest for their ability to preserve food samples from contamination without altering their quality, taste, and organoleptic properties. Recently, we evaluated the applicability of ApoB-derived peptides as novel food bio-preservatives and demonstrated their ability to prevent chicken meat sample contamination when immobilized on chitosan films. To perform a further step towards the applicability of these peptides in the food field, here we evaluated peptides biosafety and digestibility. To do this, we used a multidisciplinary approach including the evaluation of the peptides' toxicity and antimicrobial activity, the analysis of resistance phenotype development, an in silico prediction of the peptides' susceptibility to proteases and the evaluation of the peptides' stability in simulated gastric and intestinal fluids. ApoB-derived peptides were found to be nontoxic when tested on human gastric carcinoma cells SNU-1 and on human colon-rectal adenocarcinoma cells HT-29, and not to induce resistance phenotype in Salmonella strains. Bioinformatic analyses showed that the peptides are susceptible to several proteases, as also confirmed by experiments in simulated gastric and intestinal fluids. Altogether these findings open interesting perspectives to the future applicability of ApoB-derived peptides as novel food biopreservatives.
Host defense peptides identified in human apolipoprotein B as natural food bio-preservatives: Evaluation of their biosafety and digestibility / Dell'Olmo, Eliana; Pane, Katia; Schibeci, Martina; Cesaro, Angela; DE LUCA, Maria; Ismail, Shurooq; Gaglione, Rosa; Arciello, Angela. - In: PEPTIDE SCIENCE. - ISSN 2475-8817. - (2023). [10.1002/pep2.24308]
Host defense peptides identified in human apolipoprotein B as natural food bio-preservatives: Evaluation of their biosafety and digestibility
Martina Schibeci;Maria De Luca;Shurooq Ismail;Rosa Gaglione;Angela Arciello
2023
Abstract
The employment of chemical agents in the food industry is raising several concerns by consumers and is leading to an increasing interest in natural food preservatives. Among alternatives, host defense peptides (HDPs) have attracted great interest for their ability to preserve food samples from contamination without altering their quality, taste, and organoleptic properties. Recently, we evaluated the applicability of ApoB-derived peptides as novel food bio-preservatives and demonstrated their ability to prevent chicken meat sample contamination when immobilized on chitosan films. To perform a further step towards the applicability of these peptides in the food field, here we evaluated peptides biosafety and digestibility. To do this, we used a multidisciplinary approach including the evaluation of the peptides' toxicity and antimicrobial activity, the analysis of resistance phenotype development, an in silico prediction of the peptides' susceptibility to proteases and the evaluation of the peptides' stability in simulated gastric and intestinal fluids. ApoB-derived peptides were found to be nontoxic when tested on human gastric carcinoma cells SNU-1 and on human colon-rectal adenocarcinoma cells HT-29, and not to induce resistance phenotype in Salmonella strains. Bioinformatic analyses showed that the peptides are susceptible to several proteases, as also confirmed by experiments in simulated gastric and intestinal fluids. Altogether these findings open interesting perspectives to the future applicability of ApoB-derived peptides as novel food biopreservatives.File | Dimensione | Formato | |
---|---|---|---|
Peptide Science - 2023 - Dell Olmo - Host defense peptides identified in human apolipoprotein B as natural food.pdf
accesso aperto
Descrizione: Articolo in rivista
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.