Interactions between nanoparticles (NPs) determine their self-organization and dynamic processes. In these systems, a quantitative description of the interparticle forces is complicated by the presence of the hydrophobic effect (HE), treatable only qualitatively, and due to the competition between the hydrophobic and hydrophilic forces. Recently, instead, a sort of crossover of HE from hydrophilic to hydrophobic has been experimentally observed on a local scale, by increasing the temperature, in pure confined water and studying the occurrence of this crossover in different water–methanol solutions. Starting from these results, we then considered the idea of studying this process in different nanoparticle solutions. By using photon correlation spectroscopy (PCS) experiments on dendrimer with OH terminal groups (dissolved in water and methanol, respectively), we show the existence of this hydrophobic–hydrophilic crossover with a well defined temperature and nanoparticle volume fraction dependence. In this frame, we have used the mode coupling theory extended model to evaluate the measured time-dependent density correlation functions (ISFs). In this context we will, therefore, show how the measured spectra are strongly dependent on the specificity of the interactions between the particles in solution. The observed transition demonstrates that just the HE, depending sensitively on the system thermodynamics, determines the hydrophobic and hydrophilic interaction properties of the studied nanostructures surface.

The Hydrophobic Effect Studied by Using Interacting Colloidal Suspensions / Mallamace, F.; Mensitieri, G.; Salzano de Luna, M.; Mallamace, D.. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 24:3(2023), p. 2003. [10.3390/ijms24032003]

The Hydrophobic Effect Studied by Using Interacting Colloidal Suspensions

Mallamace F.
;
Mensitieri G.;Salzano de Luna M.;
2023

Abstract

Interactions between nanoparticles (NPs) determine their self-organization and dynamic processes. In these systems, a quantitative description of the interparticle forces is complicated by the presence of the hydrophobic effect (HE), treatable only qualitatively, and due to the competition between the hydrophobic and hydrophilic forces. Recently, instead, a sort of crossover of HE from hydrophilic to hydrophobic has been experimentally observed on a local scale, by increasing the temperature, in pure confined water and studying the occurrence of this crossover in different water–methanol solutions. Starting from these results, we then considered the idea of studying this process in different nanoparticle solutions. By using photon correlation spectroscopy (PCS) experiments on dendrimer with OH terminal groups (dissolved in water and methanol, respectively), we show the existence of this hydrophobic–hydrophilic crossover with a well defined temperature and nanoparticle volume fraction dependence. In this frame, we have used the mode coupling theory extended model to evaluate the measured time-dependent density correlation functions (ISFs). In this context we will, therefore, show how the measured spectra are strongly dependent on the specificity of the interactions between the particles in solution. The observed transition demonstrates that just the HE, depending sensitively on the system thermodynamics, determines the hydrophobic and hydrophilic interaction properties of the studied nanostructures surface.
2023
The Hydrophobic Effect Studied by Using Interacting Colloidal Suspensions / Mallamace, F.; Mensitieri, G.; Salzano de Luna, M.; Mallamace, D.. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 24:3(2023), p. 2003. [10.3390/ijms24032003]
File in questo prodotto:
File Dimensione Formato  
ijms-24-02003.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/914189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact