The use of muon tomography in geoscience projects has been continuously increasing over the past few years. This led to a variety of applications that often use custom-tailored solutions for data acquisition and processing. The respective know-how is splintered and mainly available in a semi-published state in various physics departments that developed these methods. This complicates the design of new studies and the decision whether muon tomography is a suitable tool and feasible for a specific geoscientific question. In this study we review the current state of how muon tomography has been applied in the field of geosciences with the goal of equipping interested geoscientists with the basic knowledge on the physical basics that constitute muon tomography. After an explanation of how muons are produced, how they traverse matter and how they are recorded, a showcase is made of recent applications. These studies show the variety of how muon tomography can be applied in experiments, such that interested readers may implement this technology for their own research. Finally, we provide a guide to best practice to help interested geoscientists decide if and how muon tomography could be implemented in their own research. We believe that through a better mutual understanding, new interdisciplinary collaborations can be initiated that advance the whole field of muon tomography.

Muon tomography in geoscientific research ??? A guide to best practice / Lechmann, Alessandro; Mair, David; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Nishiyama, Ryuichi; Pistillo, Ciro; Scampoli, Paola; Schlunegger, Fritz; Vladymyrov, Mykhailo. - In: EARTH-SCIENCE REVIEWS. - ISSN 0012-8252. - 222:(2021), p. 103842. [10.1016/j.earscirev.2021.103842]

Muon tomography in geoscientific research ??? A guide to best practice

Paola Scampoli;
2021

Abstract

The use of muon tomography in geoscience projects has been continuously increasing over the past few years. This led to a variety of applications that often use custom-tailored solutions for data acquisition and processing. The respective know-how is splintered and mainly available in a semi-published state in various physics departments that developed these methods. This complicates the design of new studies and the decision whether muon tomography is a suitable tool and feasible for a specific geoscientific question. In this study we review the current state of how muon tomography has been applied in the field of geosciences with the goal of equipping interested geoscientists with the basic knowledge on the physical basics that constitute muon tomography. After an explanation of how muons are produced, how they traverse matter and how they are recorded, a showcase is made of recent applications. These studies show the variety of how muon tomography can be applied in experiments, such that interested readers may implement this technology for their own research. Finally, we provide a guide to best practice to help interested geoscientists decide if and how muon tomography could be implemented in their own research. We believe that through a better mutual understanding, new interdisciplinary collaborations can be initiated that advance the whole field of muon tomography.
2021
Muon tomography in geoscientific research ??? A guide to best practice / Lechmann, Alessandro; Mair, David; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Nishiyama, Ryuichi; Pistillo, Ciro; Scampoli, Paola; Schlunegger, Fritz; Vladymyrov, Mykhailo. - In: EARTH-SCIENCE REVIEWS. - ISSN 0012-8252. - 222:(2021), p. 103842. [10.1016/j.earscirev.2021.103842]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/914111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact