Local governments inspect roads to decide which segments and intersections to repair. Videos are taken using a camera mounted on a vehicle. The vehicle taking the videos proceeds straight or takes a left turn to cover an intersection fully. We introduce the intersection inspection rural postman problem (IIRPP), which is a new variant of the rural postman problem (RPP) that involves turns. We develop integer programming formulations of the IIRPP based on two different graph transformations to generate least-cost vehicle routes. One formulation is based on a new idea of transforming a graph. A second formulation is based on a graph transformation idea from the literature. Computational experiments show that the formulation involving the new graph transformation idea performs much better than the other formulation. We also develop an RPP-based heuristic and a heuristic based on a modified RPP. Heuristic solutions are improved by solving integer programming formulations on an induced subgraph. Computational experiments show that the heuristics based on the modified RPP perform much better than the RPP-based heuristics. The best-performing heuristic generates very good quality IIRPP-feasible routes on large street networks quickly.

Modeling and solving the intersection inspection rural postman problem

Masone A.;
2021

Abstract

Local governments inspect roads to decide which segments and intersections to repair. Videos are taken using a camera mounted on a vehicle. The vehicle taking the videos proceeds straight or takes a left turn to cover an intersection fully. We introduce the intersection inspection rural postman problem (IIRPP), which is a new variant of the rural postman problem (RPP) that involves turns. We develop integer programming formulations of the IIRPP based on two different graph transformations to generate least-cost vehicle routes. One formulation is based on a new idea of transforming a graph. A second formulation is based on a graph transformation idea from the literature. Computational experiments show that the formulation involving the new graph transformation idea performs much better than the other formulation. We also develop an RPP-based heuristic and a heuristic based on a modified RPP. Heuristic solutions are improved by solving integer programming formulations on an induced subgraph. Computational experiments show that the heuristics based on the modified RPP perform much better than the RPP-based heuristics. The best-performing heuristic generates very good quality IIRPP-feasible routes on large street networks quickly.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/901657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact