The ability to affect a wide range of biophysical properties through the use of light has led to the development of dynamic cell instructive materials. Using photoresponsive materials such as azopolymers, smart systems that use external, minimally damaging, light irradiation can be used to trigger specific surface morpho-physical properties in the presence of living cells. The interaction of light with an azopolymer film induces a mass migration phenomenon, allowing a variety of topographic patterns to be embossed on the polymeric film. Photoisomerization induces conformational changes at the molecular and macroscopic scale, resulting in light-induced variations of substrate morphological, physical, and mechanical properties. In this review, we discuss the photoactuation of azopolymeric interfaces to provide guidelines for the engineering and design of azopolymer films. Laser micropatterning for the modulation of azopolymer surfaces is examined as a way to diversify the capabilities of these polymers in cellular systems. Mass migration effects induced by azopolymer switching provides a foundation for performing a broad range of cellular manipulation techniques. Applications of azopolymers are explored in the context of dynamic culture systems, gaining insight into the complex processes involved in dynamic cell-material interactions. The review highlights azopolymers as a candidate for various applications in cellular control, including cell alignment, migration, gene expression, and others. Recent advances have underlined the importance of these systems in applications regarding three-dimensional cell culture and stem cell morphology. Azopolymers can be used not only to manipulate cells but also to probe for mechanistic studies of cellular crosstalk in response to chemical and mechanical stimuli.

Dynamic azopolymeric interfaces for photoactive cell instruction / De Martino, Selene; Netti, PAOLO ANTONIO. - In: BIOPHYSICS REVIEWS. - ISSN 2688-4089. - (2020).

Dynamic azopolymeric interfaces for photoactive cell instruction

Paolo Antonio Netti
2020

Abstract

The ability to affect a wide range of biophysical properties through the use of light has led to the development of dynamic cell instructive materials. Using photoresponsive materials such as azopolymers, smart systems that use external, minimally damaging, light irradiation can be used to trigger specific surface morpho-physical properties in the presence of living cells. The interaction of light with an azopolymer film induces a mass migration phenomenon, allowing a variety of topographic patterns to be embossed on the polymeric film. Photoisomerization induces conformational changes at the molecular and macroscopic scale, resulting in light-induced variations of substrate morphological, physical, and mechanical properties. In this review, we discuss the photoactuation of azopolymeric interfaces to provide guidelines for the engineering and design of azopolymer films. Laser micropatterning for the modulation of azopolymer surfaces is examined as a way to diversify the capabilities of these polymers in cellular systems. Mass migration effects induced by azopolymer switching provides a foundation for performing a broad range of cellular manipulation techniques. Applications of azopolymers are explored in the context of dynamic culture systems, gaining insight into the complex processes involved in dynamic cell-material interactions. The review highlights azopolymers as a candidate for various applications in cellular control, including cell alignment, migration, gene expression, and others. Recent advances have underlined the importance of these systems in applications regarding three-dimensional cell culture and stem cell morphology. Azopolymers can be used not only to manipulate cells but also to probe for mechanistic studies of cellular crosstalk in response to chemical and mechanical stimuli.
2020
Dynamic azopolymeric interfaces for photoactive cell instruction / De Martino, Selene; Netti, PAOLO ANTONIO. - In: BIOPHYSICS REVIEWS. - ISSN 2688-4089. - (2020).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/901284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact