Malignant cells grow in a complex microenvironment that plays a key role in cancer progression. The "dynamic reciprocity" existing between cancer cells and their microenvironment is involved in cancer differentiation, proliferation, invasion, metastasis, and drug response. Therefore, understanding the molecular mechanisms underlying the crosstalk between cancer cells and their surrounding tissue (i.e., tumor stroma) and how this interplay affects the disease progression is fundamental to design and validate novel nanotherapeutic approaches. As an important regulator of tumor progression, metastasis and therapy resistance, the extracellular matrix of tumors, the acellular component of the tumor microenvironment, has been identified as very promising target of anticancer treatment, revolutionizing the traditional therapeutic paradigm that sees the neoplastic cells as the preferential objective to fight cancer. To design and to validate such a target therapy, advanced 3D preclinical models are necessary to correctly mimic the complex, dynamic and heterogeneous tumor microenvironment. In addition, the recent advancement in microfluidic technology allows fine-tuning and controlling microenvironmental parameters in tissue-on-chip devices in order to emulate the in vivo conditions. In this review, after a brief description of the origin of tumor microenvironment heterogeneity, some examples of nanomedicine approaches targeting the tumor microenvironment have been reported. Further, how advanced 3D bioengineered tumor models coupled with a microfluidic device can improve the design and testing of anti-cancer nanomedicine targeting the tumor microenvironment has been discussed. We highlight that the presence of a dynamic extracellular matrix, able to capture the spatiotemporal heterogeneity of tumor stroma, is an indispensable requisite for tumor-on-chip model and nanomedicine testing.

Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine / Imparato, Giorgia; Urciuolo, Francesco; Mazio, Claudia; Netti, Paolo A. - In: LAB ON A CHIP. - ISSN 1473-0197. - (2022). [10.1039/d2lc00611a]

Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine

Imparato, Giorgia;Urciuolo, Francesco;Mazio, Claudia;Netti, Paolo A
2022

Abstract

Malignant cells grow in a complex microenvironment that plays a key role in cancer progression. The "dynamic reciprocity" existing between cancer cells and their microenvironment is involved in cancer differentiation, proliferation, invasion, metastasis, and drug response. Therefore, understanding the molecular mechanisms underlying the crosstalk between cancer cells and their surrounding tissue (i.e., tumor stroma) and how this interplay affects the disease progression is fundamental to design and validate novel nanotherapeutic approaches. As an important regulator of tumor progression, metastasis and therapy resistance, the extracellular matrix of tumors, the acellular component of the tumor microenvironment, has been identified as very promising target of anticancer treatment, revolutionizing the traditional therapeutic paradigm that sees the neoplastic cells as the preferential objective to fight cancer. To design and to validate such a target therapy, advanced 3D preclinical models are necessary to correctly mimic the complex, dynamic and heterogeneous tumor microenvironment. In addition, the recent advancement in microfluidic technology allows fine-tuning and controlling microenvironmental parameters in tissue-on-chip devices in order to emulate the in vivo conditions. In this review, after a brief description of the origin of tumor microenvironment heterogeneity, some examples of nanomedicine approaches targeting the tumor microenvironment have been reported. Further, how advanced 3D bioengineered tumor models coupled with a microfluidic device can improve the design and testing of anti-cancer nanomedicine targeting the tumor microenvironment has been discussed. We highlight that the presence of a dynamic extracellular matrix, able to capture the spatiotemporal heterogeneity of tumor stroma, is an indispensable requisite for tumor-on-chip model and nanomedicine testing.
2022
Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine / Imparato, Giorgia; Urciuolo, Francesco; Mazio, Claudia; Netti, Paolo A. - In: LAB ON A CHIP. - ISSN 1473-0197. - (2022). [10.1039/d2lc00611a]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/901262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact