Remote sensing can provide important and updated information for agricultural water accounting (AWA). In this study, data from the open-access portal (WaPOR) of the Food and Agricultural Organization was used in AWA to assess levels of agricultural water consumption and to provide possible solutions for water deficiency in the North Jordan Valley (NJV). Consolidated procedures have been applied to complement and validate the WaPOR products. These included the use of climatic and ground data, the multispectral remote-sensing data of Sentinel-2 and Landsat 8 to derive land use/cover maps, GIS layers, and calibrated evapotranspiration (ET) estimates using the surface energy balance algorithm for land (SEBAL). The data of water inflows and outflows were analyzed using the water accounting plus (WA+) system. Results showed that the WaPOR data of actual ET and interception (AETI) were highly correlated with SEBAL-ET, with WaPOR data overestimating ET for irrigated areas. Precipitation data from WaPOR, on the other hand, were underestimating inflow from rainfall, although significant correlations were observed between these data and rainfall records. As a result, the quality of WaPOR data affected the outputs from agricultural water accounting. The main impact on water accounting outputs was the underestimation of percolated water that could be utilized as a possible solution to water deficiency in the NJV. In addition, the water accounting performance indicators were relatively affected, although they reflected the nature of the study area where water deficiency predominated as a result of inter-basin transfer. The study compared outputs from water accounting in terms of the possible solutions to water deficiency in the NJV and concluded that considerable amounts of recoverable water could be developed when compared with the option of developing surface water from the side wadis. Also, it emphasized the important role of remote-sensing sources for providing information for AWA needed for improved water management and governance.

Remote Sensing-Based Agricultural Water Accounting for the North Jordan Valley

Guido D'Urso;
2022

Abstract

Remote sensing can provide important and updated information for agricultural water accounting (AWA). In this study, data from the open-access portal (WaPOR) of the Food and Agricultural Organization was used in AWA to assess levels of agricultural water consumption and to provide possible solutions for water deficiency in the North Jordan Valley (NJV). Consolidated procedures have been applied to complement and validate the WaPOR products. These included the use of climatic and ground data, the multispectral remote-sensing data of Sentinel-2 and Landsat 8 to derive land use/cover maps, GIS layers, and calibrated evapotranspiration (ET) estimates using the surface energy balance algorithm for land (SEBAL). The data of water inflows and outflows were analyzed using the water accounting plus (WA+) system. Results showed that the WaPOR data of actual ET and interception (AETI) were highly correlated with SEBAL-ET, with WaPOR data overestimating ET for irrigated areas. Precipitation data from WaPOR, on the other hand, were underestimating inflow from rainfall, although significant correlations were observed between these data and rainfall records. As a result, the quality of WaPOR data affected the outputs from agricultural water accounting. The main impact on water accounting outputs was the underestimation of percolated water that could be utilized as a possible solution to water deficiency in the NJV. In addition, the water accounting performance indicators were relatively affected, although they reflected the nature of the study area where water deficiency predominated as a result of inter-basin transfer. The study compared outputs from water accounting in terms of the possible solutions to water deficiency in the NJV and concluded that considerable amounts of recoverable water could be developed when compared with the option of developing surface water from the side wadis. Also, it emphasized the important role of remote-sensing sources for providing information for AWA needed for improved water management and governance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/898713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact