The present work reports on the measurements of the velocity fields and the heat transfer of impinging synthetic jets driven by different waveshapes. The actuator consists of a loudspeaker oscillating inside a cavity provided with a circular nozzle. Sinusoidal input voltage signals with variable ejection duty cycle d (ratio of the duration of the positive part of the signal to the total period) are applied to investigate the influence of the waveshape on the jet dynamics and the thermal performance. A parametric study is carried by varying both d (0.3, 0.4, 0.5, 0.6, 0.7) and the Strouhal number St (0.062, 0.12, 0.19) at constant value of the Reynolds number (3,000) and fixed nozzle-to-plate distance (equal to 2 nozzle exit diameters). The phase and time-average evolution of the synthetic jets is characterized by means of planar Particle Image Velocimetry; simultaneous measurements of the heat transfer coefficients are carried out via infrared thermography using a heated thin foil as heat flux sensor. The present results show that d plays only a minor influence on the time averaged velocity structure for all the values of the Strouhal number investigated. Nevertheless, for the highest value of St increasing d has a detrimental effect on the heat transfer. The phase-averaged velocity measurements reveal that this behaviour is essentially related to the reduced strength of the synthetic jet vortices formed during the ejection phase, which in fact dominate the heat transfer in such a configuration.

Effects of driving signal waveshape on the velocity field and heat transfer of impinging synthetic jets / Paolillo, Gerardo; Greco, CARLO SALVATORE; Astarita, Tommaso; Cardone, Gennaro. - (2022). (Intervento presentato al convegno 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics tenutosi a Lisbon, Portugal. nel July 11-14, 2022).

Effects of driving signal waveshape on the velocity field and heat transfer of impinging synthetic jets

Gerardo Paolillo
;
Carlo Salvatore Greco;Tommaso Astarita;Gennaro Cardone
2022

Abstract

The present work reports on the measurements of the velocity fields and the heat transfer of impinging synthetic jets driven by different waveshapes. The actuator consists of a loudspeaker oscillating inside a cavity provided with a circular nozzle. Sinusoidal input voltage signals with variable ejection duty cycle d (ratio of the duration of the positive part of the signal to the total period) are applied to investigate the influence of the waveshape on the jet dynamics and the thermal performance. A parametric study is carried by varying both d (0.3, 0.4, 0.5, 0.6, 0.7) and the Strouhal number St (0.062, 0.12, 0.19) at constant value of the Reynolds number (3,000) and fixed nozzle-to-plate distance (equal to 2 nozzle exit diameters). The phase and time-average evolution of the synthetic jets is characterized by means of planar Particle Image Velocimetry; simultaneous measurements of the heat transfer coefficients are carried out via infrared thermography using a heated thin foil as heat flux sensor. The present results show that d plays only a minor influence on the time averaged velocity structure for all the values of the Strouhal number investigated. Nevertheless, for the highest value of St increasing d has a detrimental effect on the heat transfer. The phase-averaged velocity measurements reveal that this behaviour is essentially related to the reduced strength of the synthetic jet vortices formed during the ejection phase, which in fact dominate the heat transfer in such a configuration.
2022
978-989-53637-0-4
Effects of driving signal waveshape on the velocity field and heat transfer of impinging synthetic jets / Paolillo, Gerardo; Greco, CARLO SALVATORE; Astarita, Tommaso; Cardone, Gennaro. - (2022). (Intervento presentato al convegno 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics tenutosi a Lisbon, Portugal. nel July 11-14, 2022).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/895961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact