We describe the construction of G- or G(ϵ)-symplectic, and parasitism free or ϵ-parasitism free general linear methods for numerical integration of Hamiltonian systems of differential equations. Examples of such methods are presented up to the order p=4 and stage order q=p−1. Numerical experiments confirm that all methods achieve the expected order of accuracy, and that these methods approximately preserve Hamiltonians as well as quadratic invariants of differential systems.

Construction of G- or G(ϵ)-symplectic general linear methods

Izzo G.
;
2022

Abstract

We describe the construction of G- or G(ϵ)-symplectic, and parasitism free or ϵ-parasitism free general linear methods for numerical integration of Hamiltonian systems of differential equations. Examples of such methods are presented up to the order p=4 and stage order q=p−1. Numerical experiments confirm that all methods achieve the expected order of accuracy, and that these methods approximately preserve Hamiltonians as well as quadratic invariants of differential systems.
File in questo prodotto:
File Dimensione Formato  
2022_AMC_Symplectic_GLMs.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/895490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact