GenRL is a Deep Reinforcement Learning-based tool designed to generate test cases for Lane-Keeping Assist Systems. In this paper, we briefly presents GenRL, and summarize the results of its participation in the Cyber-Physical Systems (CPS) tool competition at SBST 2022.

GenRL at the SBST 2022 Tool Competition / Starace, LUIGI LIBERO LUCIO; Romdhana, Andrea; DI MARTINO, Sergio. - (2022). (Intervento presentato al convegno International Workshop on Search-Based Software Testing (SBST) tenutosi a Pittsburgh, PA, USA nel 09/05/2022).

GenRL at the SBST 2022 Tool Competition

Luigi Libero Lucio Starace
Primo
;
Sergio Di Martino
Ultimo
2022

Abstract

GenRL is a Deep Reinforcement Learning-based tool designed to generate test cases for Lane-Keeping Assist Systems. In this paper, we briefly presents GenRL, and summarize the results of its participation in the Cyber-Physical Systems (CPS) tool competition at SBST 2022.
2022
GenRL at the SBST 2022 Tool Competition / Starace, LUIGI LIBERO LUCIO; Romdhana, Andrea; DI MARTINO, Sergio. - (2022). (Intervento presentato al convegno International Workshop on Search-Based Software Testing (SBST) tenutosi a Pittsburgh, PA, USA nel 09/05/2022).
File in questo prodotto:
File Dimensione Formato  
GenRL_at_the_SBST_2022_Tool_Competition.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 132.37 kB
Formato Adobe PDF
132.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/894581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact