This paper presents a numerical study on an innovative system for converting energy from waves. It consists of a point pivoted body which oscillates in presence of waves. The system uses a linear electrical generator which converts floating movements of the buoyant body into electrical power. The buoyant body floats, describing an arc, by means of two hinges. A suitable Power Take-off Device (PTO) is placed between buoy support arms and the fixed structure and has the function to convert the mechanical power of the linear oscillating motion of the connecting piston into electrical power. A design assumption is made on the PTO control system: PTO reaction force is assumed to be linearly dependent on piston oscillation velocity with a given force-speed gain. This coefficient is strictly connected to electrical generator characteristics and its value has an effect on power conversion efficiency . A scaled model of this system has also been tested in the wave/towing tank facility of Department of industrial Engineering (DII) of University of Naples "Federico II". A variety of numerical analyses, such as potential flow simulations and Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations, have been performed to predict the system performances. Numerical and experimental analyses have included the performances of the baseline geometry, both in free response and under wave excitation, in order to characterize the response of the system, and results have been used to understand which parameters affect more the power production. Finally a numerical optimization procedure has been carried out to optimize the shape of the converter with the final objective of increasing the generated power, eventually imposing a constraint on the amount of immersed volume. In this way, a modified configuration has been predicted with higher power output and the same value of submerged volume, but with different shape.

Experimental test and numerical shape optimization of a point pivoted absorber for wave energy conversion / Coiro, D.; Troise, G.; Calise, G.; Bizzarrini, N.. - (2015), pp. 73-89.

Experimental test and numerical shape optimization of a point pivoted absorber for wave energy conversion

Coiro D.;
2015

Abstract

This paper presents a numerical study on an innovative system for converting energy from waves. It consists of a point pivoted body which oscillates in presence of waves. The system uses a linear electrical generator which converts floating movements of the buoyant body into electrical power. The buoyant body floats, describing an arc, by means of two hinges. A suitable Power Take-off Device (PTO) is placed between buoy support arms and the fixed structure and has the function to convert the mechanical power of the linear oscillating motion of the connecting piston into electrical power. A design assumption is made on the PTO control system: PTO reaction force is assumed to be linearly dependent on piston oscillation velocity with a given force-speed gain. This coefficient is strictly connected to electrical generator characteristics and its value has an effect on power conversion efficiency . A scaled model of this system has also been tested in the wave/towing tank facility of Department of industrial Engineering (DII) of University of Naples "Federico II". A variety of numerical analyses, such as potential flow simulations and Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations, have been performed to predict the system performances. Numerical and experimental analyses have included the performances of the baseline geometry, both in free response and under wave excitation, in order to characterize the response of the system, and results have been used to understand which parameters affect more the power production. Finally a numerical optimization procedure has been carried out to optimize the shape of the converter with the final objective of increasing the generated power, eventually imposing a constraint on the amount of immersed volume. In this way, a modified configuration has been predicted with higher power output and the same value of submerged volume, but with different shape.
2015
Experimental test and numerical shape optimization of a point pivoted absorber for wave energy conversion / Coiro, D.; Troise, G.; Calise, G.; Bizzarrini, N.. - (2015), pp. 73-89.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/891745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact