MicroRNAs (miRNAs) are a class of non-coding molecules involved in the regulation of a variety of biological processes. They have been identified and characterized in several plant species, but only limited data are available for Arundo donax L., one of the most promising bioenergy crops. Here we identified, for the first time, A. donax conserved and novel miRNAs together with their targets, through a combined analysis of high-throughput sequencing of small RNAs, transcriptome and degradome data. A total of 134 conserved miRNAs, belonging to 45 families, and 27 novel miRNA candidates were identified, along with the corresponding primary and precursor miRNA sequences. A total of 96 targets, 69 for known miRNAs and 27 for novel miRNA candidates, were also identified by degradome analysis and selected slice sites were validated by 5'-RACE. The identified set of conserved and novel candidate miRNAs, together with their targets, extends our knowledge about miRNAs in monocots and pave the way to further investigations on miRNAs-mediated regulatory processes in A. donax, Poaceae and other bioenergy crops.

Identification of Known and Novel Arundo donax L. MicroRNAs and Their Targets Using High-Throughput Sequencing and Degradome Analysis

Loreto, Francesco;
2022

Abstract

MicroRNAs (miRNAs) are a class of non-coding molecules involved in the regulation of a variety of biological processes. They have been identified and characterized in several plant species, but only limited data are available for Arundo donax L., one of the most promising bioenergy crops. Here we identified, for the first time, A. donax conserved and novel miRNAs together with their targets, through a combined analysis of high-throughput sequencing of small RNAs, transcriptome and degradome data. A total of 134 conserved miRNAs, belonging to 45 families, and 27 novel miRNA candidates were identified, along with the corresponding primary and precursor miRNA sequences. A total of 96 targets, 69 for known miRNAs and 27 for novel miRNA candidates, were also identified by degradome analysis and selected slice sites were validated by 5'-RACE. The identified set of conserved and novel candidate miRNAs, together with their targets, extends our knowledge about miRNAs in monocots and pave the way to further investigations on miRNAs-mediated regulatory processes in A. donax, Poaceae and other bioenergy crops.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/891233
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact