The pleiotropic role played by melanocortin receptors (MCRs) in both physiological and pathological processes has stimulated medicinal chemists to develop synthetic agonists/antagonists with improved potency and selectivity. Here, by deploying the Chemical Linkage of Peptide onto Scaffolds strategy, we replaced the lactam cyclization of melanotan II (MT-II), a potent and unselective agonist of human MCRs (hMCRs), with different xylene-derived thioethers. The newly designed peptides displayed binding affinities toward MCRs ranging from the low nanomolar to the sub-micromolar range, highlighting a correlation between the explored linkers and the affinity toward hMCRs. In contrast to the parent peptide (MT-II), compound 5 displayed a remarkable functional selectivity toward the hMC1R. Enhanced sampling molecular dynamics simulations were found to be instrumental in outlining how the employed cyclization strategy affects the peptides' conformational behavior and, as a consequence, the detected hMC1R affinity. Additionally, a model of the peptide 5/hMC1R complex employing the very recently reported cryogenic electron microscopy receptor structure was provided.

CLIPSing Melanotan-II to Discover Multiple Functionally Selective hMCR Agonists / Tomassi, Stefano; Dimmito, Marilisa Pia; Cai, Minying; D'Aniello, Antonia; Del Bene, Alessandra; Messere, Anna; Liu, Zekun; Zhu, Tingyi; Hruby, Victor J; Stefanucci, Azzurra; Cosconati, Sandro; Mollica, Adriano; Di Maro, Salvatore. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 1520-4804. - 65:5(2022), pp. 4007-4017. [10.1021/acs.jmedchem.1c01848]

CLIPSing Melanotan-II to Discover Multiple Functionally Selective hMCR Agonists

Tomassi, Stefano
Primo
Conceptualization
;
2022

Abstract

The pleiotropic role played by melanocortin receptors (MCRs) in both physiological and pathological processes has stimulated medicinal chemists to develop synthetic agonists/antagonists with improved potency and selectivity. Here, by deploying the Chemical Linkage of Peptide onto Scaffolds strategy, we replaced the lactam cyclization of melanotan II (MT-II), a potent and unselective agonist of human MCRs (hMCRs), with different xylene-derived thioethers. The newly designed peptides displayed binding affinities toward MCRs ranging from the low nanomolar to the sub-micromolar range, highlighting a correlation between the explored linkers and the affinity toward hMCRs. In contrast to the parent peptide (MT-II), compound 5 displayed a remarkable functional selectivity toward the hMC1R. Enhanced sampling molecular dynamics simulations were found to be instrumental in outlining how the employed cyclization strategy affects the peptides' conformational behavior and, as a consequence, the detected hMC1R affinity. Additionally, a model of the peptide 5/hMC1R complex employing the very recently reported cryogenic electron microscopy receptor structure was provided.
2022
CLIPSing Melanotan-II to Discover Multiple Functionally Selective hMCR Agonists / Tomassi, Stefano; Dimmito, Marilisa Pia; Cai, Minying; D'Aniello, Antonia; Del Bene, Alessandra; Messere, Anna; Liu, Zekun; Zhu, Tingyi; Hruby, Victor J; Stefanucci, Azzurra; Cosconati, Sandro; Mollica, Adriano; Di Maro, Salvatore. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 1520-4804. - 65:5(2022), pp. 4007-4017. [10.1021/acs.jmedchem.1c01848]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/891011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact