Let T be the multiplicative group of complex units, and let L (Φ) denote the Laplacian matrix of a nonempty T-gain graph Φ = (Γ, T, γ). The gain line graph L (Φ) and the gain subdivision graph S (Φ) are defined up to switching equivalence. We discuss how the eigenspaces determined by the adjacency eigenvalues of L (Φ) and S (Φ) are related with those of L (Φ).

On eigenspaces of some compound complex unit gain graphs

Belardo F.;Brunetti M.
2022

Abstract

Let T be the multiplicative group of complex units, and let L (Φ) denote the Laplacian matrix of a nonempty T-gain graph Φ = (Γ, T, γ). The gain line graph L (Φ) and the gain subdivision graph S (Φ) are defined up to switching equivalence. We discuss how the eigenspaces determined by the adjacency eigenvalues of L (Φ) and S (Φ) are related with those of L (Φ).
File in questo prodotto:
File Dimensione Formato  
TOC_2022 Autumn_Vol 11_Issue 3_Pages 131-152.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 594.22 kB
Formato Adobe PDF
594.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/891001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact