Although the protooncogenes small GTPases Ras are redox-sensitive proteins, how they are regulated by redox signaling in the central nervous system (CNS) is still poorly understood. Alteration in redox-sensitive targets by redox signaling may have myriad effects on Ras stability, activity and localization. Redox-mediated changes in astrocytic RAS may contribute to the control of redox homeostasis in the CNS that is connected to the pathogenesis of many diseases.

Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study

Candida Zuchegna
Investigation
;
Valeria de Rosa
Investigation
;
Francesca Boscia
Supervision
;
Antonio Porcellini
Supervision
;
Samantha Messina
Writing – Original Draft Preparation
2022

Abstract

Although the protooncogenes small GTPases Ras are redox-sensitive proteins, how they are regulated by redox signaling in the central nervous system (CNS) is still poorly understood. Alteration in redox-sensitive targets by redox signaling may have myriad effects on Ras stability, activity and localization. Redox-mediated changes in astrocytic RAS may contribute to the control of redox homeostasis in the CNS that is connected to the pathogenesis of many diseases.
File in questo prodotto:
File Dimensione Formato  
Redox Report 2022.pdf

accesso aperto

Descrizione: Versione con lista autori corretta
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/890491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact