In biomimetic design, functional systems, principles, and processes observed in nature are used for the development of innovative technical systems. The research on functional features is often carried out without giving importance to the generative mechanism behind them: evolution. To deeply understand and evaluate the meaning of functional morphologies, integrative structures, and processes, it is imperative to not only describe, analyse, and test their behaviour, but also to understand the evolutionary history, constraints, and interactions that led to these features. The discipline of palaeontology and its approach can considerably improve the efficiency of biomimetic transfer by analogy of function; additionally, this discipline, as well as biology, can contribute to the development of new shapes, textures, structures, and functional models for productive and generative processes useful in the improvement of designs. Based on the available literature, the present review aims to exhibit the potential contribution that palaeontology can offer to biomimetic processes, integrating specific methodologies and knowledge in a typical biomimetic design approach, as well as laying the foundation for a biomimetic design inspired by extinct species and evolutionary processes: Paleomimetics. A state of the art, definition, method, and tools are provided, and fossil entities are presented as potential role models for technical transfer solutions.

Paleomimetics: A Conceptual Framework for a Biomimetic Design Inspired by Fossils and Evolutionary Processes / Perricone, Valentina; Grun, Tobias; Raia, Pasquale; Langella, Carla. - In: BIOMIMETICS. - ISSN 2313-7673. - 7:3(2022), p. 89. [10.3390/biomimetics7030089]

Paleomimetics: A Conceptual Framework for a Biomimetic Design Inspired by Fossils and Evolutionary Processes

Raia, Pasquale;Langella, Carla
2022

Abstract

In biomimetic design, functional systems, principles, and processes observed in nature are used for the development of innovative technical systems. The research on functional features is often carried out without giving importance to the generative mechanism behind them: evolution. To deeply understand and evaluate the meaning of functional morphologies, integrative structures, and processes, it is imperative to not only describe, analyse, and test their behaviour, but also to understand the evolutionary history, constraints, and interactions that led to these features. The discipline of palaeontology and its approach can considerably improve the efficiency of biomimetic transfer by analogy of function; additionally, this discipline, as well as biology, can contribute to the development of new shapes, textures, structures, and functional models for productive and generative processes useful in the improvement of designs. Based on the available literature, the present review aims to exhibit the potential contribution that palaeontology can offer to biomimetic processes, integrating specific methodologies and knowledge in a typical biomimetic design approach, as well as laying the foundation for a biomimetic design inspired by extinct species and evolutionary processes: Paleomimetics. A state of the art, definition, method, and tools are provided, and fossil entities are presented as potential role models for technical transfer solutions.
2022
Paleomimetics: A Conceptual Framework for a Biomimetic Design Inspired by Fossils and Evolutionary Processes / Perricone, Valentina; Grun, Tobias; Raia, Pasquale; Langella, Carla. - In: BIOMIMETICS. - ISSN 2313-7673. - 7:3(2022), p. 89. [10.3390/biomimetics7030089]
File in questo prodotto:
File Dimensione Formato  
biomimetics-07-00089.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/890427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact