The addition of thiol compounds to o-quinones, as exemplified by the biologically relevant conjugation of cysteine to dopaquinone, displays an anomalous 1,6-type regiochemistry compared to the usual 1,4-nucleophilic addition, for example, by amines, which has so far eluded intensive investigations. By means of an integrated experimental and computational approach, herein, we provide evidence that the addition of glutathione, cysteine, or benzenethiol to 4-methyl-o-benzoquinone, modeling dopaquinone, proceeds by a free radical chain mechanism triggered by the addition of thiyl radicals to the o-quinone. In support of this conclusion, DFT calculations consistently predicted the correct regiochemistry only for the proposed thiyl radical-quinone addition pathway. These results would prompt a revision of the commonly accepted mechanisms for thiol-o-quinone conjugation and stimulate further work aimed at assessing the impact of the free radical processes in biologically relevant thiol-quinone interactions.

Disentangling the Puzzling Regiochemistry of Thiol Addition to o-Quinones / Alfieri, M. L.; Cariola, A.; Panzella, L.; Napolitano, A.; D'Ischia, M.; Valgimigli, L.; Crescenzi, O.. - In: JOURNAL OF ORGANIC CHEMISTRY. - ISSN 0022-3263. - 87:7(2022), pp. 4580-4589. [10.1021/acs.joc.1c02911]

Disentangling the Puzzling Regiochemistry of Thiol Addition to o-Quinones

Alfieri M. L.;Panzella L.;Napolitano A.;D'Ischia M.;Crescenzi O.
2022

Abstract

The addition of thiol compounds to o-quinones, as exemplified by the biologically relevant conjugation of cysteine to dopaquinone, displays an anomalous 1,6-type regiochemistry compared to the usual 1,4-nucleophilic addition, for example, by amines, which has so far eluded intensive investigations. By means of an integrated experimental and computational approach, herein, we provide evidence that the addition of glutathione, cysteine, or benzenethiol to 4-methyl-o-benzoquinone, modeling dopaquinone, proceeds by a free radical chain mechanism triggered by the addition of thiyl radicals to the o-quinone. In support of this conclusion, DFT calculations consistently predicted the correct regiochemistry only for the proposed thiyl radical-quinone addition pathway. These results would prompt a revision of the commonly accepted mechanisms for thiol-o-quinone conjugation and stimulate further work aimed at assessing the impact of the free radical processes in biologically relevant thiol-quinone interactions.
2022
Disentangling the Puzzling Regiochemistry of Thiol Addition to o-Quinones / Alfieri, M. L.; Cariola, A.; Panzella, L.; Napolitano, A.; D'Ischia, M.; Valgimigli, L.; Crescenzi, O.. - In: JOURNAL OF ORGANIC CHEMISTRY. - ISSN 0022-3263. - 87:7(2022), pp. 4580-4589. [10.1021/acs.joc.1c02911]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/888699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact