The desire for greener aircraft pushes both academic and industrial research into developing technologies, manufacturing, and operational strategies providing emissions abatement. At time of writing, there are no certified electric aircraft for passengers’ transport. This is due to the requirements of lightness, reliability, safety, comfort, and operational capability of the fast air transport, which are not completely met by the state-of-the-art technology. Recent studies have shown that new aero-propulsive technologies do not provide significant fuel burn reduction, unless the operational ranges are limited to short regional routes or the electric storage capability is unrealistically high, and that this little advantage comes at increased gross weight and operational costs. Therefore, a significant impact into aviation emissions reduction can only be obtained with a revolutionary design, which integrates disruptive technologies starting from the preliminary design phase. This paper reviews the recent advances in propulsions, aerodynamics, and structures to present the enabling technologies for a low emissions aircraft, with a focus on the commuter category. In fact, it is the opinion of the European Community, which has financed several projects, that advances on the small air transport will be a fundamental step to assess the results and pave the way for large greener airplanes.

The Enabling Technologies for a Quasi-Zero Emissions Commuter Aircraft

Ciliberti, Danilo
Primo
Conceptualization
;
Vecchia, Pierluigi Della
Investigation
;
Memmolo, Vittorio
Investigation
;
Nicolosi, Fabrizio
Project Administration
;
Ricci, Fabrizio
Investigation
2022

Abstract

The desire for greener aircraft pushes both academic and industrial research into developing technologies, manufacturing, and operational strategies providing emissions abatement. At time of writing, there are no certified electric aircraft for passengers’ transport. This is due to the requirements of lightness, reliability, safety, comfort, and operational capability of the fast air transport, which are not completely met by the state-of-the-art technology. Recent studies have shown that new aero-propulsive technologies do not provide significant fuel burn reduction, unless the operational ranges are limited to short regional routes or the electric storage capability is unrealistically high, and that this little advantage comes at increased gross weight and operational costs. Therefore, a significant impact into aviation emissions reduction can only be obtained with a revolutionary design, which integrates disruptive technologies starting from the preliminary design phase. This paper reviews the recent advances in propulsions, aerodynamics, and structures to present the enabling technologies for a low emissions aircraft, with a focus on the commuter category. In fact, it is the opinion of the European Community, which has financed several projects, that advances on the small air transport will be a fundamental step to assess the results and pave the way for large greener airplanes.
File in questo prodotto:
File Dimensione Formato  
aerospace-09-00319.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.97 MB
Formato Adobe PDF
2.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/887952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact