The notion of inertial balanced viscosity (IBV) solution to rate-independent evolutionary processes is introduced. Such solutions are characterized by an energy balance where a suitable, rate-dependent, dissipation cost is optimized at jump times. The cost is reminiscent of the limit effect of small inertial terms. Therefore, this notion proves to be a suitable one to describe the asymptotic behavior of evolutions of mechanical systems with rate-independent dissipation in the limit of vanishing inertia and viscosity. It is indeed proved, in finite dimension, that these evolutions converge to IBV solutions. If the viscosity operator is neglected, or has a nontrivial kernel, the weaker notion of inertial virtual viscosity (IVV) solutions is introduced, and the analogous convergence result holds. Again in a finite-dimensional context, it is also shown that IBV and IVV solutions can be obtained via a natural extension of the minimizing movements algorithm, where the limit effect of inertial terms is taken into account.

The notions of inertial balanced viscosity and inertial virtual viscosity solution for rate-independent systems / Riva, Filippo; Scilla, Giovanni; Solombrino, Francesco. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 16:4(2023), pp. 903-934. [10.1515/acv-2021-0073]

The notions of inertial balanced viscosity and inertial virtual viscosity solution for rate-independent systems

Scilla, Giovanni;Solombrino, Francesco
2023

Abstract

The notion of inertial balanced viscosity (IBV) solution to rate-independent evolutionary processes is introduced. Such solutions are characterized by an energy balance where a suitable, rate-dependent, dissipation cost is optimized at jump times. The cost is reminiscent of the limit effect of small inertial terms. Therefore, this notion proves to be a suitable one to describe the asymptotic behavior of evolutions of mechanical systems with rate-independent dissipation in the limit of vanishing inertia and viscosity. It is indeed proved, in finite dimension, that these evolutions converge to IBV solutions. If the viscosity operator is neglected, or has a nontrivial kernel, the weaker notion of inertial virtual viscosity (IVV) solutions is introduced, and the analogous convergence result holds. Again in a finite-dimensional context, it is also shown that IBV and IVV solutions can be obtained via a natural extension of the minimizing movements algorithm, where the limit effect of inertial terms is taken into account.
2023
The notions of inertial balanced viscosity and inertial virtual viscosity solution for rate-independent systems / Riva, Filippo; Scilla, Giovanni; Solombrino, Francesco. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 16:4(2023), pp. 903-934. [10.1515/acv-2021-0073]
File in questo prodotto:
File Dimensione Formato  
10.1515_acv-2021-0073.pdf

solo utenti autorizzati

Licenza: Creative commons
Dimensione 838.99 kB
Formato Adobe PDF
838.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/887845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact