Seasonal storage of hydrogen is a valuable option today increasingly considered in order to optimize cogeneration plants under continuous operation in an incentive framework where electricity sale to the national grids is becoming less economically profitable than in the past. The paper concerns the numerical study and optimization of a cogeneration plant installed in an industrial site having an availability of hydrogen over a continuous time scale, to meet the energy needs and mitigating the environmental impact of the plant operation by reducing the energy withdrawal from traditional sources. Two alternatives are analyzed into detail: the former regards energy production through an internal combustion engine, this last properly controlled to be fueled with blends of natural gas and increasing percentages of hydrogen, the latter concerning the addition of fuel cells to the proposed layout to further reduce the electricity integration by the grid. The dynamic response of the cogeneration system under examination is dynamically evaluated to efficiently fulfill the industrial loads to be fulfilled. First, optimization is performed by implementing a PID controller to better track the industrial demand of electric energy. The main results of this solution reveal a −81% reduction of excess electricity, a −7% reduction of natural gas consumed but a 47% raise of CO2 emissions due to the increase in thermal integration. Then, an additional energy generation from fuel cells is assumed. An economic analysis is carried out for each of the implemented configurations. The adoption of fuel cells, despite requiring a greater initial investment, allows obtaining a SPB of 1,4 years (− 16%), 1,17 Mln € of avoided costs (− 18,5%) and 1320 t/year of CO2 emissions avoided (− 95%) with respect to the initial layout.

Dynamic optimization of a cogeneration plant for an industrial application with two different hydrogen embedding solutions / Adinolfi, D.; Costa, M.; Palombo, A.; Piazzullo, D.. - In: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. - ISSN 0360-3199. - 47:24(2022), pp. 12204-12218. [10.1016/j.ijhydene.2021.10.118]

Dynamic optimization of a cogeneration plant for an industrial application with two different hydrogen embedding solutions

Palombo A.;Piazzullo D.
2022

Abstract

Seasonal storage of hydrogen is a valuable option today increasingly considered in order to optimize cogeneration plants under continuous operation in an incentive framework where electricity sale to the national grids is becoming less economically profitable than in the past. The paper concerns the numerical study and optimization of a cogeneration plant installed in an industrial site having an availability of hydrogen over a continuous time scale, to meet the energy needs and mitigating the environmental impact of the plant operation by reducing the energy withdrawal from traditional sources. Two alternatives are analyzed into detail: the former regards energy production through an internal combustion engine, this last properly controlled to be fueled with blends of natural gas and increasing percentages of hydrogen, the latter concerning the addition of fuel cells to the proposed layout to further reduce the electricity integration by the grid. The dynamic response of the cogeneration system under examination is dynamically evaluated to efficiently fulfill the industrial loads to be fulfilled. First, optimization is performed by implementing a PID controller to better track the industrial demand of electric energy. The main results of this solution reveal a −81% reduction of excess electricity, a −7% reduction of natural gas consumed but a 47% raise of CO2 emissions due to the increase in thermal integration. Then, an additional energy generation from fuel cells is assumed. An economic analysis is carried out for each of the implemented configurations. The adoption of fuel cells, despite requiring a greater initial investment, allows obtaining a SPB of 1,4 years (− 16%), 1,17 Mln € of avoided costs (− 18,5%) and 1320 t/year of CO2 emissions avoided (− 95%) with respect to the initial layout.
2022
Dynamic optimization of a cogeneration plant for an industrial application with two different hydrogen embedding solutions / Adinolfi, D.; Costa, M.; Palombo, A.; Piazzullo, D.. - In: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. - ISSN 0360-3199. - 47:24(2022), pp. 12204-12218. [10.1016/j.ijhydene.2021.10.118]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/880017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact