Caves present unique habitats for the development of microbial communities due to their peculiar environmental conditions. In caves decorated with frescoes, the characterization of microbial biofilm is important to better preserve and safeguard such artworks. This study aims to investigate the microbial communities present in the Fornelle Cave (Calvi Risorta, Caserta, Italy) and their correlation with environmental parameters. The cave walls and the wall paintings have been altered by environmental conditions and microbial activity. We first used light microscopy and scanning electron microscopy (SEM) and X-ray diffraction to characterise the biofilm structure and the mineral composition of substrata, respectively. Then, using both culture-dependent (Sanger sequencing) and culture-independent (automated ribosomal intergenic spacer analysis, ARISA) molecular methods, we demonstrated that the taxonomic composition of biofilms was different across the three substrata analysed and, in some cases, positively correlated with some environmental parameters. We identified 47 taxa in the biofilm samples, specifically 8 bacterial, 18 cyanobacterial, 14 algal and 7 fungal taxa. Fungi showed the highest number of ARISA types on the tuff rock, while autotrophic organisms (cyanobacteria and algae) on the frescoes exposed to light. This study confirms that caves constitute a biodiversity-rich environment for microbial taxa and that, in the presence of wall paintings, taxonomic characterization is particularly important for conservation and restoration purposes.

Characterisation of environmental biofilms colonising wall paintings of the Fornelle cave in the archaeological site of Cales / De Luca, D.; Caputo, P.; Perfetto, T.; Cennamo, P.. - In: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH. - ISSN 1660-4601. - 18:15(2021), p. 8048. [10.3390/ijerph18158048]

Characterisation of environmental biofilms colonising wall paintings of the Fornelle cave in the archaeological site of Cales

De Luca D.
Primo
;
Caputo P.
Secondo
Investigation
;
2021

Abstract

Caves present unique habitats for the development of microbial communities due to their peculiar environmental conditions. In caves decorated with frescoes, the characterization of microbial biofilm is important to better preserve and safeguard such artworks. This study aims to investigate the microbial communities present in the Fornelle Cave (Calvi Risorta, Caserta, Italy) and their correlation with environmental parameters. The cave walls and the wall paintings have been altered by environmental conditions and microbial activity. We first used light microscopy and scanning electron microscopy (SEM) and X-ray diffraction to characterise the biofilm structure and the mineral composition of substrata, respectively. Then, using both culture-dependent (Sanger sequencing) and culture-independent (automated ribosomal intergenic spacer analysis, ARISA) molecular methods, we demonstrated that the taxonomic composition of biofilms was different across the three substrata analysed and, in some cases, positively correlated with some environmental parameters. We identified 47 taxa in the biofilm samples, specifically 8 bacterial, 18 cyanobacterial, 14 algal and 7 fungal taxa. Fungi showed the highest number of ARISA types on the tuff rock, while autotrophic organisms (cyanobacteria and algae) on the frescoes exposed to light. This study confirms that caves constitute a biodiversity-rich environment for microbial taxa and that, in the presence of wall paintings, taxonomic characterization is particularly important for conservation and restoration purposes.
2021
Characterisation of environmental biofilms colonising wall paintings of the Fornelle cave in the archaeological site of Cales / De Luca, D.; Caputo, P.; Perfetto, T.; Cennamo, P.. - In: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH. - ISSN 1660-4601. - 18:15(2021), p. 8048. [10.3390/ijerph18158048]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/879763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact