We consider a minimal type Ib seesaw model where the effective neutrino mass operator involves two different Higgs doublets, and the two right-handed neutrinos form a heavy Dirac mass. We propose a minimal dark matter extension of this model, in which the Dirac heavy neutrino is coupled to a dark Dirac fermion and a dark complex scalar field, both charged under a discrete Z2 symmetry, where the lighter of the two is a dark matter candidate. Focussing on the fermionic dark matter case, we explore the parameter space of the seesaw Yukawa couplings, the neutrino portal couplings and dark scalar to dark fermion mass ratio, where correct dark matter relic abundance can be produced by the freeze-in mechanism. By considering the mixing between the standard model neutrinos and the heavy neutrino, we build a connection between the dark matter production and current laboratory experiments ranging from collider to lepton flavour violating experiments. For a GeV mass heavy neutrino, the parameters related to dark matter production are constrained by the experimental results directly and can be further tested by future experiments such as SHiP.

Dark matter in the type Ib seesaw model

Chianese M.;
2021

Abstract

We consider a minimal type Ib seesaw model where the effective neutrino mass operator involves two different Higgs doublets, and the two right-handed neutrinos form a heavy Dirac mass. We propose a minimal dark matter extension of this model, in which the Dirac heavy neutrino is coupled to a dark Dirac fermion and a dark complex scalar field, both charged under a discrete Z2 symmetry, where the lighter of the two is a dark matter candidate. Focussing on the fermionic dark matter case, we explore the parameter space of the seesaw Yukawa couplings, the neutrino portal couplings and dark scalar to dark fermion mass ratio, where correct dark matter relic abundance can be produced by the freeze-in mechanism. By considering the mixing between the standard model neutrinos and the heavy neutrino, we build a connection between the dark matter production and current laboratory experiments ranging from collider to lepton flavour violating experiments. For a GeV mass heavy neutrino, the parameters related to dark matter production are constrained by the experimental results directly and can be further tested by future experiments such as SHiP.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/874752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact