We analyse the seismic noise recorded at the Colima Volcano (Mexico) in the period December 2005–May 2006 by four broadband three-component seismic stations. Specifically, we characterize the spectral content of the signal and follow its time evolution along all the data set. Moreover, we infer the properties of the attractor in the phase space by false nearest neighbours analysis and Grassberger–Procaccia algorithm, and adopt a time-domain decomposition method (independent component analysis) to find the basic constituents (independent components) of the system. Constraints on the seismic wavefield are inferred by the polarization analysis.We find two states of the background seismicity visible in different time-intervals that are Phase A and Phase B. Phase A has a spectrum with two peaks at 0.15 Hz and 0.3 Hz, with the latter dominating, an attractor of correlation dimension close to 3, three quasi-monochromatic independent components, and a relevant fraction of craterpointing polarization solutions in the near-field. In Phase B, the spectrum is preserved but with the highest peak at 0.15 Hz, the attractor has a correlation dimension close to 2, two independent components are extracted, and the polarization solutions are dominated by Rayleigh waves incoming from the southwest direction. We depict two sources acting on the background seismicity that are the microseismic noise loading on the Pacific coastline and a low-energy volcanic tremor. A change in the amplitude of the microseismic noise can induce the switching from a state of the system to the other.

Wavefield decomposition and phase space dynamics of the seismic noise at Volcan de Colima, Mexico: evidence of a two-state source process / Palo, M; Cusano, P. - In: NONLINEAR PROCESSES IN GEOPHYSICS. - ISSN 1023-5809. - 20:(2013), pp. 71-84. [10.5194/npg-20-71-2013]

Wavefield decomposition and phase space dynamics of the seismic noise at Volcan de Colima, Mexico: evidence of a two-state source process

PALO M;
2013

Abstract

We analyse the seismic noise recorded at the Colima Volcano (Mexico) in the period December 2005–May 2006 by four broadband three-component seismic stations. Specifically, we characterize the spectral content of the signal and follow its time evolution along all the data set. Moreover, we infer the properties of the attractor in the phase space by false nearest neighbours analysis and Grassberger–Procaccia algorithm, and adopt a time-domain decomposition method (independent component analysis) to find the basic constituents (independent components) of the system. Constraints on the seismic wavefield are inferred by the polarization analysis.We find two states of the background seismicity visible in different time-intervals that are Phase A and Phase B. Phase A has a spectrum with two peaks at 0.15 Hz and 0.3 Hz, with the latter dominating, an attractor of correlation dimension close to 3, three quasi-monochromatic independent components, and a relevant fraction of craterpointing polarization solutions in the near-field. In Phase B, the spectrum is preserved but with the highest peak at 0.15 Hz, the attractor has a correlation dimension close to 2, two independent components are extracted, and the polarization solutions are dominated by Rayleigh waves incoming from the southwest direction. We depict two sources acting on the background seismicity that are the microseismic noise loading on the Pacific coastline and a low-energy volcanic tremor. A change in the amplitude of the microseismic noise can induce the switching from a state of the system to the other.
2013
Wavefield decomposition and phase space dynamics of the seismic noise at Volcan de Colima, Mexico: evidence of a two-state source process / Palo, M; Cusano, P. - In: NONLINEAR PROCESSES IN GEOPHYSICS. - ISSN 1023-5809. - 20:(2013), pp. 71-84. [10.5194/npg-20-71-2013]
File in questo prodotto:
File Dimensione Formato  
palo_cusano_2013_npg.pdf

non disponibili

Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/873132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact