This paper focusses on a hybrid approach based on genetic algorithm (GA) and an adaptive neuro fuzzy inference system (ANFIS) for modeling the correlation between plasma arc cutting (PAC) parameters and the response characteristics of machined Monel 400 alloy sheets. PAC experiments are performed based on box-behnken design methodology by considering cutting speed, gas pressure, arc current, and stand-off distance as input parameters, and surface roughness (Ra), kerf width (kw), and micro hardness (mh) as response characteristics. GA is efficaciously utilized as the training algorithm to optimize the ANFIS parameters. The training, testing errors, and statistical validation parameter results indicated that the ANFIS learned by GA outperforms in the forecasting of PAC responses compared with the results of multiple linear regression models. Besides that, to obtain the optimal combination PAC parameters, multi-response optimization was performed using a trained ANFIS network coupled with an artificial bee colony algorithm (ABC). The superlative responses, such as Ra of 1.5387 µm, kw of 1.2034 mm, and mh of 176.08, are used to forecast the optimum cutting conditions, such as a cutting speed of 2330.39 mm/min, gas pressure of 3.84 bar, arc current of 45 A, and stand-off distance of 2.01 mm, respectively. Furthermore, the ABC predicted results are validated by conducting confirmatory experiments, and it was found that the error between the predicted and the actual results are lower than 6.38%, indicating the adoptability of the proposed ABC in optimizing real-world complex machining processes.

A hybrid approach of anfis—artificial bee colony algorithm for intelligent modeling and optimization of plasma arc cutting on monel™ 400 alloy / Kumar, M. S.; Rajamani, D.; Nasr, E. A.; Balasubramanian, E.; Mohamed, H.; Astarita, A.. - In: MATERIALS. - ISSN 1996-1944. - 14:21(2021), p. 6373. [10.3390/ma14216373]

A hybrid approach of anfis—artificial bee colony algorithm for intelligent modeling and optimization of plasma arc cutting on monel™ 400 alloy

Astarita A.
2021

Abstract

This paper focusses on a hybrid approach based on genetic algorithm (GA) and an adaptive neuro fuzzy inference system (ANFIS) for modeling the correlation between plasma arc cutting (PAC) parameters and the response characteristics of machined Monel 400 alloy sheets. PAC experiments are performed based on box-behnken design methodology by considering cutting speed, gas pressure, arc current, and stand-off distance as input parameters, and surface roughness (Ra), kerf width (kw), and micro hardness (mh) as response characteristics. GA is efficaciously utilized as the training algorithm to optimize the ANFIS parameters. The training, testing errors, and statistical validation parameter results indicated that the ANFIS learned by GA outperforms in the forecasting of PAC responses compared with the results of multiple linear regression models. Besides that, to obtain the optimal combination PAC parameters, multi-response optimization was performed using a trained ANFIS network coupled with an artificial bee colony algorithm (ABC). The superlative responses, such as Ra of 1.5387 µm, kw of 1.2034 mm, and mh of 176.08, are used to forecast the optimum cutting conditions, such as a cutting speed of 2330.39 mm/min, gas pressure of 3.84 bar, arc current of 45 A, and stand-off distance of 2.01 mm, respectively. Furthermore, the ABC predicted results are validated by conducting confirmatory experiments, and it was found that the error between the predicted and the actual results are lower than 6.38%, indicating the adoptability of the proposed ABC in optimizing real-world complex machining processes.
2021
A hybrid approach of anfis—artificial bee colony algorithm for intelligent modeling and optimization of plasma arc cutting on monel™ 400 alloy / Kumar, M. S.; Rajamani, D.; Nasr, E. A.; Balasubramanian, E.; Mohamed, H.; Astarita, A.. - In: MATERIALS. - ISSN 1996-1944. - 14:21(2021), p. 6373. [10.3390/ma14216373]
File in questo prodotto:
File Dimensione Formato  
materials-14-06373.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 5.87 MB
Formato Adobe PDF
5.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/867187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact