In this paper, a seasonal performance analysis of a hybrid ejector cooling system is carried-out, by considering a multi-ejector pack as expansion device. A 20 kW ejector-based chiller was sized to obtain the optimal tradeoff between performance and investment costs. The seasonal performance of the proposed solution was then evaluated through a dynamic simulation able to obtain the performance of the designed chiller with variable ambient temperatures for three different reference climates. The optimized multi-ejector system required three or four ejectors for any reference climate and was able to enhance the system performance at partial load, with a significant increase (up to 107%) of the seasonal energy efficiency ratio. The proposed system was then compared to conventional cooling technologies supplied by electric energy (electrical chillers EHP) or low-grade heat sources (absorption chillers AHP) by considering the total costs for a lifetime of 20 years and electric energy-specific costs for domestic applications from 0.10 to 0.50 €/kWhel. The optimized multi-ejector cooling system presented a significant convenience with respect to both conventional technologies. For warmer climates and with high electricity costs, the minimum lifetime for the multi-ejector system to achieve the economic break-even point could be as low as 1.9 years.

Waste heat driven multi-ejector cooling systems: Optimization of design at partial load; seasonal performance and cost evaluation / Viscito, L.; Lillo, G.; Napoli, G.; Mauro, A. W.. - In: ENERGIES. - ISSN 1996-1073. - 14:18(2021), p. 5663. [10.3390/en14185663]

Waste heat driven multi-ejector cooling systems: Optimization of design at partial load; seasonal performance and cost evaluation

Viscito L.;Lillo G.;Napoli G.;Mauro A. W.
2021

Abstract

In this paper, a seasonal performance analysis of a hybrid ejector cooling system is carried-out, by considering a multi-ejector pack as expansion device. A 20 kW ejector-based chiller was sized to obtain the optimal tradeoff between performance and investment costs. The seasonal performance of the proposed solution was then evaluated through a dynamic simulation able to obtain the performance of the designed chiller with variable ambient temperatures for three different reference climates. The optimized multi-ejector system required three or four ejectors for any reference climate and was able to enhance the system performance at partial load, with a significant increase (up to 107%) of the seasonal energy efficiency ratio. The proposed system was then compared to conventional cooling technologies supplied by electric energy (electrical chillers EHP) or low-grade heat sources (absorption chillers AHP) by considering the total costs for a lifetime of 20 years and electric energy-specific costs for domestic applications from 0.10 to 0.50 €/kWhel. The optimized multi-ejector cooling system presented a significant convenience with respect to both conventional technologies. For warmer climates and with high electricity costs, the minimum lifetime for the multi-ejector system to achieve the economic break-even point could be as low as 1.9 years.
2021
Waste heat driven multi-ejector cooling systems: Optimization of design at partial load; seasonal performance and cost evaluation / Viscito, L.; Lillo, G.; Napoli, G.; Mauro, A. W.. - In: ENERGIES. - ISSN 1996-1073. - 14:18(2021), p. 5663. [10.3390/en14185663]
File in questo prodotto:
File Dimensione Formato  
energies-14-05663.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 5.25 MB
Formato Adobe PDF
5.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/866358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact