In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients’ discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous recording of different physiological data. This study presents a performance analysis of respiration monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration (EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is a novel technique that records the cardiac-induced vibrations of the chest wall via specific force sensors, which provide seismocardiogram-like information, along with a novel component that seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component (R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR (sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99, 0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland–Altman limits of agreement: ±0.61 s vs. ±1.5 s). This study represents a first proof of concept for the simultaneous recording of respiration signals and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory interactions, also paving the way for the continuous, long-term monitoring of patients with heart and pulmonary diseases.

Respiration Monitoring via Forcecardiography Sensors / Andreozzi, E.; Centracchio, J.; Punzo, V.; Esposito, D.; Polley, C.; Gargiulo, G. D.; Bifulco, P.. - In: SENSORS. - ISSN 1424-8220. - 21:12(2021), p. 3996. [10.3390/s21123996]

Respiration Monitoring via Forcecardiography Sensors

Andreozzi, E.
Primo
;
Centracchio, J.
Secondo
;
Esposito, D.;Bifulco, P.
Ultimo
2021

Abstract

In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients’ discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous recording of different physiological data. This study presents a performance analysis of respiration monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration (EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is a novel technique that records the cardiac-induced vibrations of the chest wall via specific force sensors, which provide seismocardiogram-like information, along with a novel component that seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component (R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR (sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99, 0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland–Altman limits of agreement: ±0.61 s vs. ±1.5 s). This study represents a first proof of concept for the simultaneous recording of respiration signals and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory interactions, also paving the way for the continuous, long-term monitoring of patients with heart and pulmonary diseases.
2021
Respiration Monitoring via Forcecardiography Sensors / Andreozzi, E.; Centracchio, J.; Punzo, V.; Esposito, D.; Polley, C.; Gargiulo, G. D.; Bifulco, P.. - In: SENSORS. - ISSN 1424-8220. - 21:12(2021), p. 3996. [10.3390/s21123996]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/865970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 23
social impact