We prove a higher integrability result for the gradient of solutions to some degenerate elliptic PDEs, whose model arises in the study of mappings with finite distortion.The nonnegative function K(x) which measures the degree of degeneracy of ellipticity bounds lies in the exponential class, i.e. exp(lambdaK(x)) is integrable for some lambda > 0.Our result states that if A is sufficiently large, then the gradient of a : finite energy" solution actually belongs to the Zygmund space L-P log(alpha) L, alpha greater than or equal to 1.

ON THE INTEGRABILITY OF FINITE ENERGY SOLUTIONS FOR P-HARMONIC EQUATIONS

MOSCARIELLO, GIOCONDA
2004

Abstract

We prove a higher integrability result for the gradient of solutions to some degenerate elliptic PDEs, whose model arises in the study of mappings with finite distortion.The nonnegative function K(x) which measures the degree of degeneracy of ellipticity bounds lies in the exponential class, i.e. exp(lambdaK(x)) is integrable for some lambda > 0.Our result states that if A is sufficiently large, then the gradient of a : finite energy" solution actually belongs to the Zygmund space L-P log(alpha) L, alpha greater than or equal to 1.
File in questo prodotto:
File Dimensione Formato  
nodea.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 199.48 kB
Formato Adobe PDF
199.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/8639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact