A group is called metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a (generalized) soluble group satisfying the weak minimal condition on non-normal non-abelian subgroups is either minimax or metahamiltonian.
Groups with the weak minimal condition on non-normal non-abelian subgroups / De Mari, F.. - In: BEITRAGE ZUR ALGEBRA UND GEOMETRIE. - ISSN 0138-4821. - 61:1(2020), pp. 1-7. [10.1007/s13366-019-00450-1]
Groups with the weak minimal condition on non-normal non-abelian subgroups
De Mari F.
2020
Abstract
A group is called metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a (generalized) soluble group satisfying the weak minimal condition on non-normal non-abelian subgroups is either minimax or metahamiltonian.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.