Mitogen activated protein kinase (MAPK) activation and neurogenesis are known to play a role in neuronal survival during hibernation. Herein, we investigate the activity of c-Jun N-terminal kinases (JNK) and Ets like-1 protein (Elk1) kinase involved in cell survival, as well as the expression of proliferating cell nuclear antigen (PCNA), a cell proliferation marker, in the brain of the frog Pelophylax esculentus. The study was conducted on female and male frogs collected during the annual cycle. Our results demonstrated that JNK activity increased during the hibernating phase in relation to the active phase. Interestingly, P-Elk1 levels were positively correlated with P-JNK levels, suggesting that the JNK/Elk1 pathway is pivotal in mediating neuroprotective adaptations that are essential to successful hibernation. On the contrary, we detected higher PCNA expression levels during the active period compared with the hibernating period. A sex dimorphism was observed in the expression levels of P-JNK/P-Elk1 that were specifically higher in males, and in the expression of PCNA reporting higher levels in female brains. Much remains to be learned regarding the regulation of hibernation, however, our findings provide new insights into the role of MAPK and proliferative pathways in hibernation, adding new knowledge concerning the mechanisms activated in the brain of ectothermic species to counteract the damage resulting from extreme temperatures.

JNK/Elk1 signaling and PCNA protein expression in the brain of hibernating frog Pelophylax esculentus

Rosati L.;
2021

Abstract

Mitogen activated protein kinase (MAPK) activation and neurogenesis are known to play a role in neuronal survival during hibernation. Herein, we investigate the activity of c-Jun N-terminal kinases (JNK) and Ets like-1 protein (Elk1) kinase involved in cell survival, as well as the expression of proliferating cell nuclear antigen (PCNA), a cell proliferation marker, in the brain of the frog Pelophylax esculentus. The study was conducted on female and male frogs collected during the annual cycle. Our results demonstrated that JNK activity increased during the hibernating phase in relation to the active phase. Interestingly, P-Elk1 levels were positively correlated with P-JNK levels, suggesting that the JNK/Elk1 pathway is pivotal in mediating neuroprotective adaptations that are essential to successful hibernation. On the contrary, we detected higher PCNA expression levels during the active period compared with the hibernating period. A sex dimorphism was observed in the expression levels of P-JNK/P-Elk1 that were specifically higher in males, and in the expression of PCNA reporting higher levels in female brains. Much remains to be learned regarding the regulation of hibernation, however, our findings provide new insights into the role of MAPK and proliferative pathways in hibernation, adding new knowledge concerning the mechanisms activated in the brain of ectothermic species to counteract the damage resulting from extreme temperatures.
File in questo prodotto:
File Dimensione Formato  
Falvo et al., 2021b.pdf

solo utenti autorizzati

Licenza: Accesso privato/ristretto
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/853744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact