Extracellular polysaccharides are widely produced by bacteria, yeasts, and algae. These polymers are involved in several biological functions, such as bacteria adhesion to surface and biofilm formation, ion sequestering, protection from desiccation, and cryoprotection. The chemical characterization of these polymers is the starting point for obtaining relationships between their structures and their various functions. While this fundamental correlation is well reported and studied for the proteins, for the polysaccharides, this relationship is less intuitive. In this paper, we elucidate the chemical structure and conformational studies of a mannan exopolysaccharide from the permafrost isolated bacterium Psychrobacter arcticus strain 273-4. The mannan from the cold-adapted bacterium was compared with its dephosphorylated derivative and the commercial product from Saccharomyces cerevisiae. Starting from the chemical structure, we explored a new approach to deepen the study of the structure/activity relationship. A pool of physicochemical techniques, ranging from small-angle neutron scattering (SANS) and dynamic and static light scattering (DLS and SLS respectively) to circular dichroism (CD) and cryo-transmission electron microscopy (cryo-TEM), have been used. Finally, the ice recrystallization inhibition activity of the polysaccharides was explored. The experimental evidence suggests that the mannan exopolysaccharide from P. arcticus bacterium has an efficient interaction with the water molecules, and it is structurally characterized by rigid-rod regions assuming a 14-helix-type conformation.

A physico-chemical approach to understanding the structure, the conformation, and the activity of mannan polysaccharides / Casillo, Angela; Fabozzi, Antonio; Russo-Krauss, Irene; Parrilli, Ermenegilda; Biggs, Caroline I.; Gibson, Matthew I.; Lanzetta, Rosa; Appavou, Marie-Sousay; Radulescu, Aurel; Tutino, MARIA LUISA; Paduano, Luigi; Corsaro, MARIA MICHELA. - In: BIOMACROMOLECULES. - ISSN 1526-4602. - 22:(2021), pp. 1445-1457. [10.1021/acs.biomac.0c01659]

A physico-chemical approach to understanding the structure, the conformation, and the activity of mannan polysaccharides.

Angela Casillo;Antonio Fabozzi;Irene Russo-Krauss;Ermenegilda Parrilli;Rosa Lanzetta;Maria Luisa Tutino;Luigi Paduano
;
Maria Michela Corsaro
2021

Abstract

Extracellular polysaccharides are widely produced by bacteria, yeasts, and algae. These polymers are involved in several biological functions, such as bacteria adhesion to surface and biofilm formation, ion sequestering, protection from desiccation, and cryoprotection. The chemical characterization of these polymers is the starting point for obtaining relationships between their structures and their various functions. While this fundamental correlation is well reported and studied for the proteins, for the polysaccharides, this relationship is less intuitive. In this paper, we elucidate the chemical structure and conformational studies of a mannan exopolysaccharide from the permafrost isolated bacterium Psychrobacter arcticus strain 273-4. The mannan from the cold-adapted bacterium was compared with its dephosphorylated derivative and the commercial product from Saccharomyces cerevisiae. Starting from the chemical structure, we explored a new approach to deepen the study of the structure/activity relationship. A pool of physicochemical techniques, ranging from small-angle neutron scattering (SANS) and dynamic and static light scattering (DLS and SLS respectively) to circular dichroism (CD) and cryo-transmission electron microscopy (cryo-TEM), have been used. Finally, the ice recrystallization inhibition activity of the polysaccharides was explored. The experimental evidence suggests that the mannan exopolysaccharide from P. arcticus bacterium has an efficient interaction with the water molecules, and it is structurally characterized by rigid-rod regions assuming a 14-helix-type conformation.
2021
A physico-chemical approach to understanding the structure, the conformation, and the activity of mannan polysaccharides / Casillo, Angela; Fabozzi, Antonio; Russo-Krauss, Irene; Parrilli, Ermenegilda; Biggs, Caroline I.; Gibson, Matthew I.; Lanzetta, Rosa; Appavou, Marie-Sousay; Radulescu, Aurel; Tutino, MARIA LUISA; Paduano, Luigi; Corsaro, MARIA MICHELA. - In: BIOMACROMOLECULES. - ISSN 1526-4602. - 22:(2021), pp. 1445-1457. [10.1021/acs.biomac.0c01659]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/852303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact