We aimed to assess the performance of radiomics and machine learning (ML) for classification of non-cystic benign and malignant breast lesions on ultrasound images, compare ML's accuracy with that of a breast radiologist, and verify if the radiologist's performance is improved by using ML.
Clinical value of radiomics and machine learning in breast ultrasound: a multicenter study for differential diagnosis of benign and malignant lesions / Romeo, Valeria; Cuocolo, Renato; Apolito, Roberta; Stanzione, Arnaldo; Ventimiglia, Antonio; Vitale, Annalisa; Verde, Francesco; Accurso, Antonello; Amitrano, Michele; Insabato, Luigi; Gencarelli, Annarita; Buonocore, Roberta; Argenzio, Maria Rosaria; Cascone, Anna Maria; Imbriaco, Massimo; Maurea, Simone; Brunetti, Arturo. - In: EUROPEAN RADIOLOGY. - ISSN 0938-7994. - 31:12(2021), pp. 9511-9519. [10.1007/s00330-021-08009-2]
Clinical value of radiomics and machine learning in breast ultrasound: a multicenter study for differential diagnosis of benign and malignant lesions
Romeo, Valeria;Cuocolo, Renato;Apolito, Roberta;Stanzione, Arnaldo
;Ventimiglia, Antonio;Vitale, Annalisa;Verde, Francesco;Accurso, Antonello;Insabato, Luigi;Gencarelli, Annarita;Buonocore, Roberta;Imbriaco, Massimo;Maurea, Simone;Brunetti, Arturo
2021
Abstract
We aimed to assess the performance of radiomics and machine learning (ML) for classification of non-cystic benign and malignant breast lesions on ultrasound images, compare ML's accuracy with that of a breast radiologist, and verify if the radiologist's performance is improved by using ML.File | Dimensione | Formato | |
---|---|---|---|
Clinical value of radiomics and machine learning in breast ultrasound a multicenter study for differential diagnosis of benign and malignant lesions.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.