We aimed to assess the performance of radiomics and machine learning (ML) for classification of non-cystic benign and malignant breast lesions on ultrasound images, compare ML's accuracy with that of a breast radiologist, and verify if the radiologist's performance is improved by using ML.
Clinical value of radiomics and machine learning in breast ultrasound: a multicenter study for differential diagnosis of benign and malignant lesions
Romeo, Valeria;Cuocolo, Renato;Apolito, Roberta;Stanzione, Arnaldo
;Ventimiglia, Antonio;Vitale, Annalisa;Verde, Francesco;Accurso, Antonello;Insabato, Luigi;Gencarelli, Annarita;Buonocore, Roberta;Imbriaco, Massimo;Maurea, Simone;Brunetti, Arturo
2021
Abstract
We aimed to assess the performance of radiomics and machine learning (ML) for classification of non-cystic benign and malignant breast lesions on ultrasound images, compare ML's accuracy with that of a breast radiologist, and verify if the radiologist's performance is improved by using ML.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Clinical value of radiomics and machine learning in breast ultrasound a multicenter study for differential diagnosis of benign and malignant lesions.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.