We consider a family of quasilinear second order elliptic differential operators which are not coercive and are defined by functions in Marcinkiewicz spaces. We prove the existence of a solution to the corresponding Dirichlet problem. The associated obstacle problem is also solved. Finally, we show higher integrability of a solution to the Dirichlet problem when the datum is more regular.

Noncoercive quasilinear elliptic operators with singular lower order terms / Farroni, Fernando; Greco, Luigi; Moscariello, Gioconda; Zecca, Gabriella. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 60:3(2021). [10.1007/s00526-021-01965-z]

Noncoercive quasilinear elliptic operators with singular lower order terms

Farroni, Fernando;Greco, Luigi;Moscariello, Gioconda
;
Zecca, Gabriella
2021

Abstract

We consider a family of quasilinear second order elliptic differential operators which are not coercive and are defined by functions in Marcinkiewicz spaces. We prove the existence of a solution to the corresponding Dirichlet problem. The associated obstacle problem is also solved. Finally, we show higher integrability of a solution to the Dirichlet problem when the datum is more regular.
2021
Noncoercive quasilinear elliptic operators with singular lower order terms / Farroni, Fernando; Greco, Luigi; Moscariello, Gioconda; Zecca, Gabriella. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 60:3(2021). [10.1007/s00526-021-01965-z]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/850169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact