In this paper, we present an analytical study of the impact of light trapping and multilayer antireflection coating (ARC) on the electrical characteristics of n(a-Si:H)/i(a-Si:H)/p(c-Si)/p+(C-Si) heterojunction solar cells with intrinsic thin layer (SHJ). The developed analytical model considers a triangular texture morphology of the solar cell top surface and a double ARC layer. This model serves as a fitness function to optimize the device reliability against the interfacial traps using Grey Wolf optimization approach (GWO). The optimized solar cell reveals a high short circuit current I SC = 47.9 mA, an open circuit voltage V OC = 0.56 V, fill factor FF = 74.72% and a conversion efficiency improvement in the order of 30% over conventional planar solar cells efficiency. Not only the optimized SHJ solar cell exhibits higher performance in terms of figure of merits, but also shows superior interfacial traps reliability at the amorphous/crystalline interface. This reliability enhancement is due to a better surface texture control and intrinsic thin film layer tuning provided by GWO approach.

Improving the efficiency of a-Si:H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating / Bencherif, H.; Dehimi, L.; Pezzimenti, F.; Della Corte, F. G.. - In: OPTIK. - ISSN 0030-4026. - 182:(2019), pp. 682-693. [10.1016/j.ijleo.2019.01.032]

Improving the efficiency of a-Si:H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating

Della Corte F. G.
2019

Abstract

In this paper, we present an analytical study of the impact of light trapping and multilayer antireflection coating (ARC) on the electrical characteristics of n(a-Si:H)/i(a-Si:H)/p(c-Si)/p+(C-Si) heterojunction solar cells with intrinsic thin layer (SHJ). The developed analytical model considers a triangular texture morphology of the solar cell top surface and a double ARC layer. This model serves as a fitness function to optimize the device reliability against the interfacial traps using Grey Wolf optimization approach (GWO). The optimized solar cell reveals a high short circuit current I SC = 47.9 mA, an open circuit voltage V OC = 0.56 V, fill factor FF = 74.72% and a conversion efficiency improvement in the order of 30% over conventional planar solar cells efficiency. Not only the optimized SHJ solar cell exhibits higher performance in terms of figure of merits, but also shows superior interfacial traps reliability at the amorphous/crystalline interface. This reliability enhancement is due to a better surface texture control and intrinsic thin film layer tuning provided by GWO approach.
2019
Improving the efficiency of a-Si:H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating / Bencherif, H.; Dehimi, L.; Pezzimenti, F.; Della Corte, F. G.. - In: OPTIK. - ISSN 0030-4026. - 182:(2019), pp. 682-693. [10.1016/j.ijleo.2019.01.032]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/849630
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 35
social impact