We present a comprehensive experimental and numerical study of magnetization dynamics in a thin metallic film triggered by single-cycle terahertz pulses of ∼20 MV/m electric field amplitude and ∼1 ps duration. The experimental dynamics is probed using the femtosecond magneto-optical Kerr effect, and it is reproduced numerically using macrospin simulations. The magnetization dynamics can be decomposed in three distinct processes: a coherent precession of the magnetization around the terahertz magnetic field, an ultrafast demagnetization that suddenly changes the anisotropy of the film, and a uniform precession around the equilibrium effective field that is relaxed on the nanosecond time scale, consistent with a Gilbert damping process. Macrospin simulations quantitatively reproduce the observed dynamics, and allow us to predict that novel nonlinear magnetization dynamics regimes can be attained with existing tabletop terahertz sources.

Nonlinear Magnetization Dynamics Driven by Strong Terahertz Fields / Hudl, M.; D'Aquino, M.; Pancaldi, M.; Yang, S. -H.; Samant, M. G.; Parkin, S. S. P.; Durr, H. A.; Serpico, C.; Hoffmann, M. C.; Bonetti, S.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 123:19(2019), p. 197204. [10.1103/PhysRevLett.123.197204]

Nonlinear Magnetization Dynamics Driven by Strong Terahertz Fields

D'Aquino M.;Serpico C.;
2019

Abstract

We present a comprehensive experimental and numerical study of magnetization dynamics in a thin metallic film triggered by single-cycle terahertz pulses of ∼20 MV/m electric field amplitude and ∼1 ps duration. The experimental dynamics is probed using the femtosecond magneto-optical Kerr effect, and it is reproduced numerically using macrospin simulations. The magnetization dynamics can be decomposed in three distinct processes: a coherent precession of the magnetization around the terahertz magnetic field, an ultrafast demagnetization that suddenly changes the anisotropy of the film, and a uniform precession around the equilibrium effective field that is relaxed on the nanosecond time scale, consistent with a Gilbert damping process. Macrospin simulations quantitatively reproduce the observed dynamics, and allow us to predict that novel nonlinear magnetization dynamics regimes can be attained with existing tabletop terahertz sources.
2019
Nonlinear Magnetization Dynamics Driven by Strong Terahertz Fields / Hudl, M.; D'Aquino, M.; Pancaldi, M.; Yang, S. -H.; Samant, M. G.; Parkin, S. S. P.; Durr, H. A.; Serpico, C.; Hoffmann, M. C.; Bonetti, S.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 123:19(2019), p. 197204. [10.1103/PhysRevLett.123.197204]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/842524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact